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A B S T R A C T

Environmental contours are an established method in probabilistic engineering design, especially in ocean
engineering. The contours help engineers to select the environmental states which are appropriate for structural
design calculations. Defining an environmental contour means enclosing a region in the variable space which
corresponds to a certain return period. However, there are multiple definitions of environmental contours for a
given return period as well as different methods to compute a contour. Here, we analyze the established
approaches and present a new concept which we call highest density contour (HDC). We define this
environmental contour to enclose the highest density region (HDR) of a given probability density. This region
occupies the smallest possible volume in the variable space among all regions with the same included
probability, which is advantageous for engineering design. We perform the calculations using a numerical grid
to discretize the original variable space into a finite number of grid cells. Each cell's probability is estimated and
used for numerical integration. The proposed method can be applied to any number of dimensions, i.e. number
of different variables in the joint probability model. To put the highest density contour method in context, we
compare it to the established inverse first-order reliability method (IFORM) and show that for common
probability distributions the two methods yield similarly shaped contours. In multimodal probability
distributions, however, where IFORM leads to contours which are difficult to interpret, the presented method
still generates clearly defined contours.

1. Introduction

1.1. Purpose of environmental contours

Engineers have to design any marine structure in such a way that it
is able to withstand the loads induced by the environment. As the
environment, i.e. wind, waves and currents, continually change and
cannot be predicted for long periods of time, the environment is often
modeled stochastically by defining probability density functions, f x( )j .
Then, the structure is designed to withstand all but some extremely
rare environmental states, e.g. all waves with significant wave heights,
Hs, less than a threshold, hs, with a cumulative probability or
exceedance probability of α, i.e. Pr H h α( ≤ ) = 1 −s s or
Pr H h α( > ) =s s . In general notation for any random variable, X1, there
exists a threshold, x1, which fulfills

∫F x Pr X x f x dx α( ) = ( ≤ ) = ( ) = 1 − .
x

1 1 1
−∞

1

(1)

The exceedance probability, α, corresponds to a certain recurrence or
return period, T, which describes the average time period between two
consecutive environmental states above the threshold, x1. The thresh-
old is called return value. For example, to comply with standards a
marine structure such as an offshore wind turbine is required to
withstand significant wave heights, Hs, with a return period, T, of 50
years [20].

Often, however, structural safety depends not only on one variable,
but on the occurrence of combinations of p variables, X{ }j j

p
=1. When two

variables are of importance, e.g. significant wave height, Hs, and
spectral peak period, Tp, a joint probability density function can be
defined and an environmental contour can be calculated which
encloses the subset (or region) of environmental states that the
structure has to be designed for. Here, we call this region design

http://dx.doi.org/10.1016/j.coastaleng.2017.03.002
Received 23 December 2016; Received in revised form 1 March 2017; Accepted 15 March 2017

⁎ Corresponding author at: University of Bremen, Faculty of Production Engineering, BIK – Institute for Integrated Product Development, 28359 Bremen, Germany.
E-mail addresses: a.haselsteiner@uni-bremen.de (A.F. Haselsteiner), johlendorf@uni-bremen.de (J.-H. Ohlendorf), wwosniok@math.uni-bremen.de (W. Wosniok),

tho@biba.uni-bremen.de (K.-D. Thoben).

Coastal Engineering 123 (2017) 42–51

0378-3839/ © 2017 Published by Elsevier B.V.

MARK

http://www.sciencedirect.com/science/journal/03783839
http://www.elsevier.com/locate/coastaleng
http://dx.doi.org/10.1016/j.coastaleng.2017.03.002
http://dx.doi.org/10.1016/j.coastaleng.2017.03.002
http://dx.doi.org/10.1016/j.coastaleng.2017.03.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coastaleng.2017.03.002&domain=pdf


region (Fig. 1). Often the most critical structural response is associated
with very high or low values of environmental variables, i.e. with
environmental conditions located at the boundary of the design region.
Consequently, standards allow engineers to calculate structural re-
sponses for a limited set of environmental design conditions along the
contour instead of requiring engineering calculations based on a high
number of possible variable combinations spread over the complete
design region [8]. If there are more than two variables the concept of
environmental contours leads to environmental surfaces (3 variables)
or environmental manifolds (>3 variables). Here, for simplicity we also
refer to these as environmental contours.

1.2. Different definitions and methods

As there are different mathematical definitions for environmental
contours one has to further specify which kind of environmental
contour is being calculated. Different concepts of environmental
contours lead to different design loads and consequently to different
structural responses [1]. Originally, environmental contours arose
from the concept of return values in univariate probability density
functions which are calculated based on one-sided exceedance over
threshold (Fig. 2a). Consequently, a logical definition for an environ-
mental contour is (i) constant one-sided exceedance in all directions of
the p-dimensional variable space, Pr X x X x X x α( > , > , …, > ) =p p1 1 2 2 .
The bottom panel in Fig. 2a shows the contour for the two-dimensional
joint distribution of X1 and X2. However, for design purposes not only
the highest values of a variable can be of interest, but also the lowest.
For example, when designing an offshore structure, low values of the
peak period, Tp, have to be considered as the structure's natural
frequencies can be either higher or lower than the average peak period.
Consequently, another possible definition for an environmental con-
tour is (ii) two-sided exceedance over threshold (Fig. 2b; e.g. [21]). A
third possibility is to define an environmental contour to have (iii)

constant probability density, fm, along its path enclosing the most
likely environmental states (Fig. 2c). In this case a T-year return period
means that on average every T years an environmental state with a
probability density less than fm occurs. In the broader statistics
literature the variable region enclosed by such a contour is called a
highest density region (HDR) [19]. Although HDRs are a logical
concept for environmental contours, yet no author has strictly followed
this definition. The design curve introduced by Haver [14] is a related
concept since it is a line of constant probability density, but only one-
sided exceedance is considered. The constant probability density
approach described by Det Norske Veritas [8] does define a fully
closed contour of constant probability density. However, it is designed
in such a way that it is unclear how much probability is enclosed by the
contour. Instead the contour's probability density, f, is chosen to be the
joint probability density of the x x( , )1 2 -variable combination with
x1=return value based on the marginal x1-distribution and x2=an
associated x2 value (Fig. 3c). Leira [23], however, has indeed used
the HDR definition but only after a transformation of the original

Nomenclature

α Exceedance probability [-]
αW, βW, γW Parameters of a Weibull distribution [-]
f Cell-averaged joint probability density [-]
F f( )m Probability enclosed by a contour of fm probability

density [-]
fX1 Cell-averaged probability density in dimension 1 [-]
fX X2| 1 Cell-averaged probability density in dimension 2 condi-

tional on x1 [-]
β Radius in U-space used in IFORM [-]

Failure region [-]
μ2, σ2 Parameters of a normal distribution [-]
θ Angle [deg]
μ∼Hs, σ∼Hs Parameters of a log-normal distribution [-]
a1, a2, a3, b1, b2, b3 Fitted parameters of the conditional distribu-

tion [-]
C Set making up the environmental contour [-]
F() Cumulative distribution function [-]
f () Probability density function [-]
fm Minimum probability density of the enclosed region /

constant probability density along the contour [-]
f *
m Normalized minimum probability density [-]
Hs Significant wave height, random variable [m]
hs Significant wave height, realization [m]
Hs,25 25-year return value of the significant wave height based

on its marginal distribution [m]
H ∮s Maximum significant wave height along the contour [m]
j Dimension index [-]
K, L Number of grid cells in the respective dimension [-]

k, l Grid cell index [-]
LN() Log-normal distribution [-]
M Random variable in general variable space [-]
m Realization of the random variable in general variable

space [-]
n Total number of environmental states in a given time

period [-]
N() Normal distribution [-]
p Number of variables / dimensions [-]
Pf Failure probability [-]
pHs Mixture coefficient [-]
Pr() Probability function [-]
R Set enclosed by the environmental contour (highest

density region) [-]
rM0 Reference point [-]
T Return period [years]
Tp Spectral peak period [s]
Tz Zero-upcrossing period, random variable [s]
tz Zero-upcrossing period, realization [s]
T ∮z Maximum zero-upcrossing period along the contour [s]
U Random variable in standard normal space [-]
u Realization of the random variable in standard normal

space [-]
X Random variable in original space [-]
x Realization of the random variable in original space [-]
z Number of components [-]
HDC Highest density contour [-]
HDR Highest density region [-]
IFORM Inverse first order reliability method [-]

Fig. 1. Concept of an environmental contour. (a) The environmental contour encloses all
variable combinations which must be considered in the design process (the design
region). (b) Flowchart describing the design process utilizing an environmental contour.
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variables into standard normal space. When transforming the contour
back to the original variable space the constant probability density is
not preserved. Here we will compute contours strictly following the
HDR definition.

Besides these different definitions of types of environmental con-
tours there exist different methods to calculate a given type of
environmental contour. The traditional and probably most used
approach is the so-called inverse first-order reliability method
(IFORM) [34,15]. It is a standard design practice for a wide range of
marine engineering applications where extreme sea states are of
interest [8]. These are for example ships [11], offshore wind turbines
[20], floating structures [9] or wave energy converters [7,10]. Using
IFORM one defines the contour in standard normal space, Uj, instead

of the original environmental variable space, Xj. Thus, one first defines
a circle with a radius, β, in the U-space (Fig. 3a). The radius
corresponds to the return period and increases with longer periods.
Then one transforms the points along the circle to the original variable
space leading to the environmental contour.This transformation is
done via the inverse Rosenblatt transformation [27]. As its name
implies IFORM is a reliability method and is based on the idea that the
exceedance region approximates the failure region, , of a structure
(and the exceedance probability, α, approximates the structure's failure
probability, Pf; see [25]). Contours based on IFORM are widely used
and have been published e.g. by Saranyasoontorn and Manuel [28],
Leira [23], Baarholm et al. [2], Li et al. [24], Myers et al. [26],
Valamanesh et al. [30], Eckert-Gallup et al. [13].

Huseby et al. [17], however, pointed out that the Rosenblatt
transformation introduces errors as failure probabilities, Pf, can be
underestimated or overestimated on a case by case basis. Therefore,
they introduced an alternative method to calculate environmental
contours in the original variable space. Following their method, one
first carries out a Monte Carlo simulation to generate a high number of
sea states based on a given joint probability distribution model. Then
one chooses an angle, θ, defining a line (in two dimensions, p=2) and
varies its position such that it divides the variable space into one
halfspace containing the majority of data points and the other halfspace
containing the data points representing the exceedance probability,
α n× (with n being the total number of simulated environmental
states, Fig. 3b). By iterating this procedure over a finite number of
angles, θ ∈ [0, 360), the resulting lines can be connected to an
environmental contour. This new approach has been picked up in
several recent publications, e.g. to compare the approach to the
traditional IFORMmethod [33], to compare different statistical models
[31] or to decrease the required process time [18]. While the Monte
Carlo method overcomes the problems caused by the Rosenblatt
transformation it requires the simulation of environmental states
which is computationally more expensive than the simple IFORM
calculations. Further, by its definition the method cannot generate
concave contours.

Jonathan et al. [21] define and calculate environmental contours
yet differently. Using clear mathematical notation they find a contour
with constant exceedance probability, Pr X x X x α( > , > ) =1 1 2 2 (notation
for two dimensions, p=2). Thus, instead of finding halfspaces which are
tangential to the contour, their exceedance regions have finite bound-
aries for each variable leading to outwards radiating rectangles in a
two-dimensional Cartesian coordinate system (Fig. 3d). Consequently,
in contrast to IFORM and the Monte Carlo approach the method does
not try to match the exceedance region with the failure region and thus
separates the concept of an environmental contour from a structure's
failure function. Following this method one first chooses a reference
point, rM0. Then one defines a line which passes through that point at
an angle, θ, to the abscissa. Lastly one finds the position along the line
which satisfies Pr α= . Repeating this procedure over a full circle,
θ ∈ [0, 360), one finds the environmental contour. The method can be
applied in any variable space, Mj, e.g. in original variables, Xj, or
standard normal variables, Uj. Further, besides fully closed contours,
one-sided exceedance is also considered by the authors. One can
combine the method with using modern conditional extreme models
[16] as demonstrated by Jonathan et al. [22,21]. The method dis-
connects the environmental state statistics from any particular struc-
tural problem which makes it a more general approach to define a T-
year set of environmental states for any further use of these data.
However, like the reliability methods, it defines multiple α-exceedance
regions in the variable space of a single probability model. While in
reliability methods the idea is that one of these multiple exceedance
regions overlaps with the failure region this is not the case with the
Pr X x X x α( > , > ) =1 1 2 2 definition. Thus, if a contour is defined inde-
pendently of the concept of failure regions, it seems more meaningful
to define α to be the probability of a single region (instead of having

Fig. 2. Different definitions of environmental contours and their basis in univariate
probability distributions. (a–c) Top: Univariate probability distributions (p=1). Bottom:
Example data and contours based on two-dimensional joint probability distributions
(p=2). (a) One-sided exceedance. (b) Two-sided exceedance. (c) Highest density regions
(HDRs) with a minimum probability density, fm.

Fig. 3. Established methods to calculate environmental contours. (a) Inverse first-order
reliability method (IFORM) [34]. The contour is defined as a circle in standard normal
variables, Uj. The points along the circle have to be transformed to the original
environmental variables, Xj. (b) Huseby et al. [17] Monte Carlo contour. The contour
is computed with the environmental variables, Xj, directly. (c) Constant probability
density contour described by Det Norske Veritas [8]. By its definition it is unclear how
much probability is enclosed by the contour. (d) Jonathan et al. [21] constant exceedance
probability contour. The calculation can be done in a general set of variables, Mj, e.g. in
the X- or U-space. In comparison to the other methods a different definition for the
exceedance region is used (compare shaded areas).
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multiple regions with α probability content).
Motivated by the individual advantages the described contour

calculation methods have, here, we introduce contours enclosing
highest probability density regions which we compute using numerical
integration. We continue the idea introduced by Jonathan et al. [21] of
decoupling the exceedance region from the structure's failure region,
but go one step further and do not define any kind of outwards
radiating exceedance region. Instead, we choose to find a contour
which encloses the most likely environmental states which together
make up a defined probability of α1 − . The proposed method allows us
to define the contour in the original variable space and can be used for
any number p of dimensions. By discretizing the variable space into a
finite number of grid cells and using numerical integration techniques
any probability distribution can be evaluated, e.g common parametric
sea state joint probability distributions [32], nonparametric models
[12] or extreme value models which can have discontinuities at the
threshold [29]. Similar as being done e.g. in computational fluid
dynamics [5] we demonstrate that with a sufficiently small grid cell
size the solution is grid independent.

2. Data

In order to compare our environmental contour approach to similar
methods we use the 3-hour sea state model presented by Vanem and
Bitner-Gregersen [32]. They use a fitted joint model for significant
wave height, Hs, and zero-upcrossing period, Tz. Based on their model
environmental contours have been calculated using both the traditional
IFORM method [32] and the newer Monte Carlo method [17]. The
joint model was derived from one particular location in the ERA-
Interim data set [6]. Significant wave height, Hs, is modeled as a 3-
parameter Weibull distribution with the parameters αW (scale), βW
(shape) and γW (location):

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥f h

β
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h γ
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−
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W

β

s W

−1W W

(2)

Based on a least squares fit the parameters are α = 2.776W , β = 1.471W
and γ = 0.8888W [32].

The zero-upcrossing period, Tz, is modeled to follow a log-normal
distribution, LN:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥f t h LN μ σ

t σ π
t μ

σ
( | ) = ( , ) = 1

2
exp

−(ln − )
2

.∼
∼ ∼

∼
∼

T H z s Hs Hs
z Hs

z Hs

Hs
|

2
2

2z s
(3)

The distribution's parameters, μ∼Hs and σ∼Hs, are conditional on the
significant wave height, Hs, and are modeled as 3-parameter functions:

μ h a a h( ) = + ,∼
Hs s s

a
1 2

3 (4)

σ h b b b h( ) = + exp( ).∼
Hs s s1 2 3 (5)

In this case they are estimated to be a1=0.1000, a2=1.489, a3=0.1901,
b1=0.0400, b2=0.1748, b = − 0.22433 [32].

Multiplying the marginal distribution of the significant wave height,
Hs, and the conditional distribution of the zero-upcrossing period, Tz,
we can calculate the joint distribution:

f h t f h f t h( , ) = ( ) ( | ).H T s z H s T H z s, |s z s z s (6)

Since the data represent 3-hour sea states, exeedance probability, α, for
a T-year return period is calculated as

α
n T

= 1 = 1
× 365.25 × 24/3

.
(7)

3. Highest density contour (HDC)

3.1. Analytical definition

Our goal is to find a contour, C, of constant probability density, fm,
which encloses a probability of α1 − , i.e.:



∫

C f x x f x f
R f f x f

f x dx α

( ) = { : ∈ , ( ) = },
( ) = { ( ) ≥ },

( ) = 1 − .

m
p

m

m m

R f( )m (8)

This contour, C, encloses the highest density region, R. Therefore we
call C highest density contour (HDC). A highest density region fulfills
two main properties: (i) the probability density of every point inside is
at least as large as the probability density of any point outside and (ii)
for a given probability content the region occupies the smallest possible
volume in the variable space [4]. There is no general analytic solution
to find the HDR or HDC, i.e. solving for C or R in Eq. (8).

HDRs, however, can be computed based on numerical integration
approaches [35] or Monte Carlo techniques [19]. Environmental
contours involve very low α values and are usually based on low-
dimensional probability models. Thus, we choose numerical integra-
tion over Monte Carlo simulation to compute the highest density
contour, C. However, if a probability model, which incorporates many
environmental variables (high p value), is evaluated numerical integra-
tion might become infeasible and Monte Carlo approaches should be
used. Here, we use numerical integration and start by discretizing the
probability density space into a finite number of equally sized grid cells.
In the next section we will evaluate the two-dimensional case, but in
the appendix the equations for p dimensions are given.

3.2. Numerical integration approach in two dimensions

The two-dimensional probability space is discretized in K×L grid
cells with a constant size of x xΔ × Δ1 2 (Fig. 4). Each grid cell's center
point, x x( , )k l1 2 , is used as the reference position of the cell. Then, based
on the cumulative distribution function, FX1, the cell-averaged prob-
ability density in the first dimension, fX1, is calculated using central
difference:

f x
F x x F x x

x
( ) =

( + 0.5Δ ) − ( − 0.5Δ )
Δ

.X
X X

1 1
1 1 1 1 1 1

1 (9)

The cell-averaged probability density in the second dimension, fX X2| 1, is
calculated similarly:

Fig. 4. Computation of the highest density contour (HDC) using a numerical grid.
Shaded area=HDR, outline=HDC. (a) The variable space is discretized in equally sized
grid cells and the average probability density, f , is calculated for each cell. The

probability enclosed by a HDC of fm probability density is calculated by first finding
all cells whose probability density, f , is greater than or equal the minimum probability

density, fm, and then summing up the individual probabilities of these cells. (b) An
environmental contour is computed by iteratively finding the minimum probability
density, fm, that satisfies F f α( ) = 1 −m .
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f x x
F x x F x x

x
( | ) =

( + 0.5Δ ) − ( − 0.5Δ )
Δ

.X X
X X X X

2| 1 2 1
2| 1 2 2 | 2 2

2

2 1

(10)

While fX1 is the true cell-averaged probability density in the first
dimension, in the second dimension, fX2 is approximated since the
dependence of FX X2| 1 upon x1 within the grid cell is not accounted for.
Instead we fix x1 to the value at the grid cell center, x x= l1 1 , and
therefore assume FX X2| 1 to be constant from x x− 0.5Δl1 1 to x x+ 0.5Δl1 1.

Multiplying the two individual probability densities yields the cell-
averaged joint probability density, f :

f x x f x f x x( , ) = ( ) ( ).X X X1 2 1 1 2| 1 2 1 (11)

Now we can compute the probability that an event with a minimum
probability density of fm occurs, i.e. we calculate the probability
content enclosed by a HDC of fm probability density. This probability,
F f( )m , is calculated by summing up the probabilities of all cells which
have a probability density greater than or equal fm (Fig. 4):

⎪

⎪

⎧
⎨
⎩∑ ∑F f

f x x x x f x x f
f x x f

( ) =
( , )Δ Δ if ( , ) ≥

0 if ( , ) < .m
k

K

l

L
k l k l m

k l m=1 =1

1 2 1 2 1 2

1 2 (12)

If the joint probability density function is unimodal the grid cells which
fulfill f f≥ m make up a single contiguous area. The boundary of this
area is a contour which encloses a probability of F . Using the function
F f( )m we can consequently find a contour with a given exeedance
probability, α, of interest by finding the corresponding minimum
probability density, fm:

F f α( ) = 1 − .m (13)

Solving this equation is a root finding problem of a monotonically
decreasing function (F f α( ) − 1 + = 0)m . We solve the equation using
Matlab's (version R2015b, The MathWorks, USA) fzero function which
iteratively finds the root of a nonlinear function. All grid cells fulfilling
f f≥ m then approximate the HDR, R f( )m , and the grid cells making up
the boundary of the HDR approximate the HDC, C f( )m .

4. Results and discussion

4.1. Properties of the highest density contours

As done in previous work based on the described joint probability
model [17,32] we compute the 1-, 10- and 25-year environmental
contours (Fig. 5). The corresponding exceedance probabilities are
α = 3.42 × 101

−4, α = 3.42 × 1010
−5 and α = 1.37 × 1025

−5 respectively.
The computed HDCs have constant probability densities of
f = 4.4 × 10m1

−5 (1-year), f = 4.3 × 10m10
−6 (10-year) and

f = 1.7 × 10m25
−6 (25-year). Fig. 6a shows how the enclosed probability,

F , monotonically decreases with increasing fm until it reaches F = 0.
Since the probability functions we use here (Weibull and log-normal)
are unbounded, F asymptotically approaches 1 as fm approaches 0.
Fig. 6b presents the maximum Hs- and Tz-values along a contour of

constant fm-probability density
⎛
⎝⎜

⎞
⎠⎟H T,∮ ∮s z . Longer return periods, T,

lead to smaller fm-values and consequently to bigger contours with
higher H ∮s and T ∮z values.

As discretization in general is sensitive to step size we evaluate the
contour's robustness with respect to grid cell size x HΔ = Δ s1 , x TΔ = Δ z2 .
We analyze how minimum probability density, fm, changes with grid
cell size. In all three tested return periods (1-, 10- and 25-year contour)
minimum probability density, fm, is roughly constant at small cell sizes
and starts to fluctuate with increasing cell size indicating a grid-
independent solution can be reached (Fig. 7a). Oversized grid cells can
lead to minimum probability density being half or double than the
converged minimum probability density (Fig. 7b). For the given
probability model we find that convergence is reached at a grid cell
size of Hs=0.05 m and Tz=0.05 s. There, deviation to the smallest

tested grid cell size is less than 1%, f0.99 < * < 1.01m , with f *
m being

minimum probability density, fm, normalized by the converged fm
value (Fig. 7c).

4.2. Comparison with IFORM and Monte Carlo contours

For comparison we further compute environmental contours using
IFORM based on the same probability model. The highest density
contours have similar shapes as the contours calculated with IFORM
and the Monte Carlo method (Fig. 8c,d). However, we define a HDC to
enclose a probability of α1 − while an IFORM contour and a Huseby
et al. [17] Monte Carlo contour each enclose a probability less than

α1 − since by their definitions multiple regions outside the contour
have a probability of α (Fig. 8a). Consequently, the HDC's dimensions
in terms of Hs and Tz are bigger in comparison. However, for a fairer
comparison we can inflate an IFORM contour and find the T-year
contour which encloses exactly α1 − probability. Leira [23] showed
that this can be done by utilizing the inverted Rayleigh distribution (for
two dimensions). The author calls these contours equi-shape contours.
Here, we find that such a 25-year equi-shape contour corresponds to a
308.8-year IFORM contour. The contour's shape and size is roughly
similar to the 25-year HDC. These similarities suggest that the 308.8-
year IFORM contour has approximately constant probability density,
fm25, along the contour.

To visualize a typical data set, we Monte Carlo simulate 25 years of
3-hour sea states (n=73,050; gray dots in Fig. 8c). In this particular
data set one data point exceeds the HDC while there are multiple data
points exceeding the 25-year IFORM contour. The different contour
dimensions can also be expressed in terms of maximum Hs- and Tz-
values along the contour (H ∮s , T ∮z ). While Huseby et al. [17] report 25-

year maxima of H = 14.66 m∮s 25 and T = 13.68 s∮z 25 for the Monte Carlo

contour, here we find H = 16.79 m∮s 25 and T = 14.64 s∮z 25 for the HDC

and H =15.23 m∮s 25 and T = 13.96 s∮z 25 for the IFORM contour (Fig. 8d).
Thus, the HDC H ∮s 25 value is 10.2 % higher than the IFORM value and
14.5 % higher than the Monte Carlo method value. Consequently, from
an engineering design point of view the HDC is the most conservative
method of the three considered.

This does not only apply to the considered distribution, but is a
generic property based on the different definitions of these three

Fig. 5. Computed highest density contours. Along the contour probability density, fm, is
constant and the enclosed region has a probability of α1 − with α corresponding to a
given T-year return period (T=1, 10 or 25 years). Grid cell size is 0.05 m×0.05 s.
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contours. The IFORM and Monte Carlo contours are defined to contain
the return value of the marginal distribution as their highest variable
value, i.e. H H=∮s s25 ,25 (Fig. 8a). On the other hand, a HDC is defined to

enclose α1 − probability. Since it does not contain all Hs-Tz sea states
fulfilling H H<s s,25 (which together would make up α1 − probability) it
must contain some sea states with H H>s s,25.

By the HDC's definition of an enclosed probability of α1 − , in a
random 25-year data set the probability that at least one data point
exceeds a 25-year contour is about 63.2%, α1 − (1 − ) ≈ 0.632n

25 with
n = 25 × 365.25 × 24/3 = 73, 050. Here, exceedance precisely means
that this sea state realization is anywhere outside the region enclosed
by the contour, R f( )m . Such a sea state occurs on average every 25 years.
This simple and clear interpretation is why we have chosen the
definition of constant probability density and a probability of α1 − ,
i.e. defining the contour to enclose the highest density region. We
believe that this definition offers an intuitive and meaningful concept
for a T-year environmental contour in the engineering design process.

If an engineer designs a structure to withstand all sea states inside a T-
year contour, the structure will be designed for the most likely
(extreme) sea states which are expected to occur in T years. Then on
average every T years a sea state will occur which the structure is not
designed for.

Alternative concepts with multiple α-exceedance regions (see
Fig. 3a,b) are based on the idea of known failure regions in the context
of structural reliability methods (see [25]). IFORM assumes that a
structure's failure surface (or limit state surface) has a convex shape. It
defines the α-halfspace exceedance regions in its particular way
because in that case the true failure surface can be linearized such
that the variable space is separated by a straight line at an angle θ into a
survival region and a failure region (in two dimensions). Then, this
failure region overlaps with IFORM's exceedance region. It has the
failure probability P α=f and the survival region the survival prob-
ability P1 − f . Here, however, we completely separate the idea of
describing the environmental conditions from any particular structural

Fig. 6. Expansion of the highest density contour. (a) The probability enclosed by the contour, F f( )m , is 1 at a minimum probability density of fm=0 and monotonically decreases to

F f( ≈ 0.12) = 0m . Probabilities corresponding to the 1-,10- and 25-year contour are shown. The inlet illustrates the definition of F and fm. (b) Maximum variable values along the

contour, H ∮s and T ∮z , as a function of minimum probability density, fm. The inlet illustrates that there is no (H ∮s , T ∮z )-sea state along the contour. Instead, the (H T, )∮s z -sea state has a

Tz value different from T ∮z and vice versa.

Fig. 7. Grid independence study. Quadratic grid cells with sizes ranging from 0.01 to 10 units of grid cell length are tested to evaluate grid convergence. (a) The contour's minimum
probability density, fm, for a given return period is sensitive to grid cell size HΔ s, TΔ p. Sensitivity increases with grid cell length. (b) If grid cell size is too big minimum probability

density, fm, can be half or double than the converged minimum probability density. Plotted is f *
m which is minimum probability density, fm, normalized by the converged fm value. (c)

Aiming for grid convergence with an error of less than 1 % we use grid cells with dimensions of 0.05 m×0.05 s (marked with a vertical line).
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problem. Thus, we do not intend to align the α-probability exceedance
region with a particular failure region.

As described IFORM leads to a contour which encloses less than
α1 − probability and consequently results in less conservative design

conditions compared to a HDC. If the structural design, which is
developed based on these environmental conditions, has a convex
failure surface, the theoretical precondition of IFORM is met. Then in
comparison, a HDC can be seen as overly conservative. Thus, if the
designer knows that a structure responds with a convex failure surface
choosing an IFORM contour is advantageous in the sense that it yields
less conservative but still safe design conditions.

While many structures respond with a convex failure surface this
precondition for IFORM connects the environmental contour to a
certain class of structures. The shape of the failure surface might be

unknown beforehand and only becomes apparent during the design
process. If it turns out that the failure surface is non-convex and
therefore violates IFORM's precondition the designer would need to go
one step backwards and define new design conditions by inflating the
IFORM contour. By not making use of the properties of possible
structural responses the HDC is more conservative, but also more
general in its application. It would avoid the need of the described
iteration loop in the design process.

Further, a highest density contour is advantageous in the design
process of a structural problem of a system consisting of multiple
components. Consider a series structure consisting of z different
components with z different failure functions. In a series structure a
failure of one component results in failure of the system [3]. Suppose
that each component fulfills IFORM's precondition of having a convex

Fig. 8. Comparison of environmental contours derived using different methods. (a) Sketches showing expected differences in contour size due to different definitions. Some contours are
defined in such a way that the maximum value along the contour, H ∮s 25, is equal the return value of the marginal distribution, Hs25, (middle). The highest density contour (HDC),

however, is defined to enclose α1 − probability and thus has a maximum value along the contour which is higher than the return value of the marginal distribution, H H>∮s s25 25, (right).

(b) Sketch illustrating an IFORM contour and possible failure regions of a linear system of three components, 1, 2, 3. Since the contour contains less than α1 − probability the

system's failure probability can be greater than α. (c) A total of n=73,050 sea state data points have been Monte Carlo simulated representing a 25-year data set (scatter plot). The 25-
year HDC (solid line) and the 25-year IFORM contour (short dashes) have similar shapes, but as expected the HDC is bigger. The 308.8-year IFORM contour or 25-year equi-shape
contour (long dashes; [23]) encloses the same amount of probability as the 25-year HDC. (d) Comparison of maximum values along the contour, H ∮s and T ∮z . As expected by the

different definitions, the HDC has the highest maximum significant wave height, H ∮s , and maximum zero-upcrossing period, T ∮z .
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failure surface. Nevertheless, the probability contained by the union of
all z failure regions, ∪ … ∪ z1 2 , could exceed α (Fig. 8b). In that
case it would be expected that frequenter than every T years an
environmental state occurs which leads to failure of some of the
components and consequently failure of the system. If an environ-
mental contour containing α1 − probability were used to design the
components, on the other hand, by definition the system's probability
of failure would be less than α. Consequently, the system would be
expected to survive longer than T years.

A similar example could be given for a single component with
multiple failure modes. The three failure regions shown in Fig. 8b
would then correspond to different failure modes and the same
conclusions as for the series structure could be drawn. These two
examples explain why IFORM is primarily aimed at assessing the
reliability of one component failing in one particular failure mode. A
highest density contour, on the other hand, could be used in these two
cases without worrying that any assumptions might be violated.

4.3. Bimodal mixture model

Highest density contours can be computed based on any probability
distribution. The used definition of constant probability density along
the contour, fm, can lead to multiple enclosed subregions for a given
return period, T, if the probability distribution is multimodal. Here, we
demonstrate this by extending the joint Hs-Tz-probability distribution
by a mixture model for the zero-upcrossing period, Tz. We use the Hs-
Tz environmental variables although we are aware that such a Hs-Tz
distribution might be physically unrealistic. However, for simplicity we
build upon the previously described sea state model instead of setting
up a new case with a different set of environmental variables. Thus, we
keep the log-normal distribution term, LN σ(μ , )∼ ∼

Hs Hs
2 , from Eqs. (3)–(5)

and mix it with a normal distribution, N μ σ( , )2 2
2 :

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟f t h p LN μ σ p N μ σ( | ) = , + (1 − ) , .∼∼

T H z s Hs Hs Hs Hs|
2

2 2
2

z s (14)

Similar to the parameters μ∼Hs and σ∼Hs we define the mixture coefficient,
pHs, to be conditional on significant wave height, Hs. Using an

exponential decay function, we let the normal distribution term,
N μ σ( , )2 2

2 , fade out at high significant wave height, Hs:

p h h( ) = 1 − exp( − 3 ).Hs s s (15)

We design two mixture models. For the first model we create a
normal distribution, N, such that its probability density blends
smoothly into the log-normal distribution, LN, by using a mean value
of μ = 102 s and standard deviation of σ = 22 s (model 1). For the
second model we design a normal distribution which has much less
density overlap by using a mean value of μ = 152 s and standard
deviation of σ = 0.52 s (model 2). For both models we compute the 25-
year HDC as well as the 25-year IFORM contour. In model 1 the HDC
and IFORM contour have similar shapes. Both have a concave path at
high Tz-values and as expected the HDC is bigger in size (Fig. 9a). In
contrast, model 2 has two distinct probability density maxima which
lead to different shapes for the IFORM and HDC. While the HDC
encloses two separated subregions the IFORM contour encloses a
single contiguous region (Fig. 9b). This single region contains sea states
with much lower probability densities than the conservative HDC as by
its definition IFORM can only enclose one single contiguous region.
Consequently, in this example an engineer who designs a structure to
withstand all loads caused by the environmental states along this 25-
year contour would design the structure to withstand some environ-
mental states which are expected to occur extremely rarely. Therefore,
possible structural designs which are limited by these environmental
states would not be considered which could lead to bad design, either
from a cost or engineering perspective.

The apparent difference in shape between the two contours is
interesting since it visually demonstrates that the IFORM contour does
not have constant probability along its path and consequently does not
enclose the most likely environmental states. Strictly, this should not
be expected anyway, but since it is roughly true for many ordinary sea
state models, one might intuitively interpret an IFORM contour that
way. By IFORM's definition the contour has two properties in the U-
space: (i) constant probability density along its path and (ii) α-
probability halfspaces separated by lines which are tangent to the
contour (Fig. 3a). Interestingly, for many sea state probability models
these two properties roughly translate to the X-space. Here, we

Fig. 9. Environmental contours for mixture models. (a) Model 1 has a normal Tz-distribution, N μ σ( = 10 s, = 2 s)2 2 , which smoothly blends into the original Tz-log-normal

distribution. The highest density contours and IFORM contours have similar shapes. (b) Model 2 has a normal Tz-distribution, N μ σ( = 15 s, = 0.5 s)2 2 , which leads to a second

probability density maximum. Consequently, the highest density contour encloses two separated subregions. Due to its definition IFORM, however, encloses a single contiguous region.

A.F. Haselsteiner et al. Coastal Engineering 123 (2017) 42–51

49



demonstrate the rough persistence of the constant probability density
property for the unmodified sea state model since in this case IFORM
and HDCs have similar shapes (Fig. 8b). Rough persistence of the α-
halfspace property, on the other hand, has been shown by Huseby et al.
[17] who computed Monte Carlo contours which are defined by
enforcing the α-halfspace property in the original variable space
(Fig. 3b). These Monte Carlo contours have been reported to have
similar shapes as the IFORM contours. Thus, based on experience an
engineer might intuitively interpret a typical IFORM contour to have
roughly constant probability density and α-halfspace exceedance
probability in the original variable space.

This interpretation would not hold true for the multimodal model 2,
however. In addition to clearly not having constant probability density
it also does not roughly have α-halfspace exceedance in the original
variable space since the contour is concave. Not having any meaningful
properties in the original variable space, raises the question how to
intuitively interpret an IFORM contour in such a case. In contrast, the
presented highest density contour with its constant probability density,
fm, along the contour and its enclosure of a probability of α1 − offers a
clear interpretation for any probability distribution.

5. Summary and conclusions

In this work we present environmental contours which enclose

regions of highest probability density. A highest density contour (HDC)
has constant probability density along its path and occupies the
smallest possible volume in the variable space for a given probability
content. We compute the contour using numerical integration based on
a grid, i.e. we iteratively find the minimum probability density, fm,
which leads to a contour containing the most likely environmental
states which together have a probability of α1 − . Defined this way a T-
year environmental contour is exceeded on average every T years
anywhere along the contour. This means precisely that such an
environmental state is realized anywhere outside the environmental
contour (and not in a further limited exceedance region). Highest
density contours can be computed based on any probability density
function, e.g. standard parametric sea state models, nonparametric
models or extreme value models. The method's clear definition in terms
of exceedance probability, α, as well as its straightforward computation
makes it an attractive alternative to the established IFORM approach.
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Appendix A. Equations for p dimensions

We start by discretizing the p-dimensional probability space into Π Kj
p

j=1 grid cells with grid cell lengths of xΔ j. Next, we calculate the cell-
averaged probability density in each dimension, fXj. This is done based on the respective cumulative distribution function, FXj:

f x
F x x F x x

x
( ) =

( + 0.5Δ ) − ( − 0.5Δ )
Δ

.Xj j
Xj j j Xj j j

j (A.1)

Multiplying the p individual probability densities yields the cell-averaged joint probability density, f :

f x x x Π f x( , , …, ) = ( ).p j
p

j1 2 =1 Xj (A.2)

Next, we compute the probability enclosed by a contour of fm probability density. This is done by calculating the sum of each cell's probability whose
probability density is greater than or equal fm:
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1

1

2

2
1 2

(A.3)

Now, we can proceed as in two dimensions. We want to find the minimum probability density, fm, that corresponds to the exceedance probability, α,
of interest:

F f α( ) = 1 −m (A.4)

As in two dimensions, this equation represents a root finding problem of a monotonically decreasing function F f α( ( ) − 1 + = 0)m which can be
solved with standard numerical methods, e.g. by using Matlab's fzero function.

A Matlab implementation working up to four dimensions can be downloaded at http://mathworks.com/matlabcentral/fileexchange/60876. Fig.
A.10 shows a source code snippet and the corresponding flowchart.

Fig. A.10. Computer program to derive a highest density contour. Left: Code snippet written in the Matlab programming language. Right: Corresponding flowchart.
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