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Abstract

The majority of the Earth’s surface is covered by oceans. Waves, currents, and winds are phenomena
that act as load requirements in the design process of any offshore structure. While there are many
types of offshore structures such as bridges, oil platforms, or wave energy converters, one type of
structure currently gets the most attention: offshore wind turbines, which are expected to become
one of the main sources of future energy supply. They are typically designed for a design life of
20 or 25 years and therefore must withstand all environmental conditions that can reasonably be
expected during this time. To evaluate a design, one estimates its structural response under given
environmental loading. This requires a description of the expected environmental conditions and a
method to decide which environmental conditions should be considered as design requirements.

This thesis addresses the design process of offshore structures. Engineering standards and guide-
lines describe the state of the art of this process and recommend models that shall be used to describe
the environment and to estimate the extreme structural response. In particular, three design pro-
cess steps where current methods can lead to problems are addressed: (1) Modeling the probability
distribution of significant wave height; (2) modeling the joint distribution of wind speed and wave
height; and (3) determining 50-year joint environmental extremes. New methods to deal with these
three steps are proposed and evaluated. Finally, a case study on a 5 MW wind turbine is conducted.

Addressing the first step, this thesis shows that the long-term distribution of significant wave
height can be modeled with an exponentiated Weibull distribution. The exponentiated Weibull dis-
tribution is a generalization of the common two-parameter Weibull distribution. It has two shape
parameters, which provide the model with the required flexibility to describe the shape of the em-
pirical distribution. In a study based on six wave height datasets, using the exponentiated Weibull
distribution was evaluated. The distribution parameters were estimated with a weighted least squares
method. The exponentiated Weibull distribution predicted the height of the highest 0.1% waves with
a mean absolute error of 0.4±0.1 m (mean± standard deviation over the six datasets) while the state-
of-the-art method led to an error of 1.8±0.5 m.

For the second step, to improve current joint distribution models for wind and wave, this thesis
explores the idea of modeling the dependence structure of the environmental variables with phys-
ically interpretable relationships. In the proposed model, the dependence structure of wind speed
and significant wave height is modeled such that the median significant wave height h̃s conditional
on wind speed v increases with h̃s = c6 + c7v

c8 where c6, c7, and c8 are parameters that are esti-
mated based on empirical data. The advantage of this model structure is that one can interpret c6
as the part of significant wave height that is not generated by wind at the same place and the same
time and the second term that contains c7 and c8 as the part that is generated by local wind. Then
c8 is a parameter that describes the type of wind sea. Oceanographers have developed various the-
ories for wind seas that imply different values of c8. Based on the same datasets as in the study on
the first step, it was found that the novel model structure can describe the dependence between wind
speed and wave height better than the model structure that is currently recommended in engineering
guidelines.

The third step that is addressed in this thesis concerns the question of howN -year environmental
extremes can be defined that lead to an N -year structural response. As the method that is currently
used mostly to define such joint extremes, the inverse first-order reliability method (IFORM), can
underestimate the structural response; an alternative definition for joint environmental extremes was
proposed: N -year environmental extremes can be defined as the boundary of a highest density region
that is exceeded on average once everyN years anywhere. When the response of an offshore structure
is evaluated at the environmental conditions along such anN -year highest density contour, the high-
est structural response will always have a return period of at least N years (assuming the response is
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deterministic). Thus, this definition of joint environmental extremes will lead to conservative design
loads, irrespective of the topological characteristics of the response function. Conservative design
loads ensure that an offshore structure fulfills its target reliability.

These three contributions – two new models for the long-term distribution of the environment
and a new method to define joint environmental extremes – were integrated into a formal description
of the overall design process of an offshore structure. This methodology to derive design loads and to
evaluate the structural response is based on the process described in the international design standard
for offshore wind turbines by the International Electrotechnical Commission, the IEC 61400-3-1
standard. It was generalized to be applicable to any offshore structure and its description of how
extreme load cases should be handled was adapted.

The three contributions of this thesis were also implemented in an open-source software intended
to support researchers and practitioners who design or analyze offshore structures. In addition, this
software contains state-of-the-art methods that can be used as an alternative to the models and meth-
ods proposed in this thesis. The software already has external users, for example, engineers who de-
sign wind turbines.

To analyze the current design practice, a case study on the long-term extreme response of an off-
shore wind turbine was conducted. The case study focused on the question of how accurate envi-
ronmental contour methods can estimate the extreme loads that lead to a 50-year extreme response.
It was found that estimates that are based on environmental contour methods can lead to a strong
underestimation of the extreme response. Different sources contribute to the overall error. In this
case study, bias due to ignoring the response’s short-term variability was particularly high. Ignoring
short-term variability led to an underestimation of up to 28% of the true 50-year response. This sug-
gests that in the future, the international standard that regulates wind turbine design should include
methods to compensate for ignoring short-term variability.

Finally, topics for future research are proposed. It would be interesting to investigate which
physics explains why significant wave height observations roughly follow an exponentiated Weibull
distribution. Another interesting question is how current knowledge about climate change could be
incorporated into the methods that are used to define extreme loads. Lastly, the idea of using design
contours in fields other than structural engineering is discussed. Generally, contours describe joint
extremes that serve as requirements in the design process. Such contours could also be useful in the
field of ergonomics to define requirements for joint distributions of variables such as total height
and hip height. A general methodology for deriving extreme design requirements could potentially
be developed by connecting the fields of engineering design and statistics of extremes.
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Zusammenfassung

Der größte Teil der Erdoberfläche ist vom Meer bedeckt. Wellen, Strömungen und Winde sind Phä-
nomene, die als Lastanforderungen im Entwurfsprozess jeder Offshore-Struktur wirken. Während es
viele Arten von Offshore-Strukturen gibt, wie zum Beispiel Brücken, Bohrinseln oder Wellenkraft-
werke, erhält eine Art von Struktur derzeit die meiste Aufmerksamkeit: Offshore-Windkraftanlagen,
welche wahrscheinlich eine der Hauptquellen der zukünftigen Energieversorgung werden. Sie wer-
den typischerweise für eine Lebensdauer von 20 oder 25 Jahren ausgelegt und müssen daher al-
len Umweltbedingungen standhalten, die während dieses Zeitraums vernünftigerweise zu erwarten
sind. Um einen Entwurf zu bewerten, schätzt man sein Strukturverhalten unter gegebenen Lasten
ab. Dies erfordert eine Beschreibung der zu erwartenden Umweltbedingungen und eine Methode,
um zu entscheiden, welche Umweltbedingungen als Auslegungsanforderungen berücksichtigt wer-
den sollten.

Diese Arbeit befasst sich mit dem Entwurfsprozess von Offshore-Strukturen. Technische Nor-
men und Richtlinien beschreiben den Stand der Technik dieses Prozesses und empfehlen Modelle,
die zur Beschreibung der Umweltbedingungen und zur Abschätzung der extremen Strukturantwort
verwendet werden sollen. Im Besonderen werden drei Teilschritte des Entwurfsprozesses adressiert,
bei denen die derzeitigen Methoden zu Problemen führen können: (1) Die Modellierung der Wahr-
scheinlichkeitsverteilung der signifikanten Wellenhöhe, (2) die Modellierung der gemeinsamen Ver-
teilung von Windgeschwindigkeit und Wellenhöhe und (3) das Bestimmen der 50-jährigen gemein-
samen Umweltextreme. Neue Methoden zum Umgang mit diesen drei Schritten werden vorgeschla-
gen und bewertet. Schließlich wird eine Fallstudie an einer 5-MW-Windkraftanlage durchgeführt.

Den ersten Schritt betreffend, zeigt diese Arbeit, dass die langfristige Verteilung der signifikan-
ten Wellenhöhe mit einer potenzierten Weibull-Verteilung modelliert werden kann. Die potenzierte
Weibull-Verteilung ist eine Verallgemeinerung der gemeinen Zwei-Parameter-Weibullverteilung. Sie
hat einen zweiten Formparameter, der dem Modell die notwendige Flexibilität bietet, um die Form
der empirischen Verteilung zu beschreiben. In einer Studie, die auf sechs Wellenhöhe-Datensätzen
basiert, wurde die Verwendung der potenzierten Weibull-Verteilung evaluiert. Die Verteilungspara-
meter wurden mit einer gewichteten Methode der kleinsten Quadrate geschätzt. Mit der potenzier-
ten Weibullverteilung konnte die Höhe der höchsten 0,1 % Wellen mit einem mittleren absoluten
Fehler von 0,4±0,1 m (Mittelwert ± Standardabweichung über die sechs Datensätze) vorhergesagt
werden, während die Methode nach dem Stand der Technik zu einem Fehler von 1,8±0,5 m führte.

Für den zweiten Schritt, die Verbesserung der derzeitigen gemeinsamen Verteilungsmodelle für
Wind und Welle, wird in dieser Arbeit die Idee untersucht, die Abhängigkeitsstruktur der Umwelt-
variablen mit physikalisch interpretierbaren Beziehungen zu modellieren. In dem vorgeschlagenen
Modell wird die Abhängigkeitsstruktur von Windgeschwindigkeit und signifikanter Wellenhöhe so
modelliert, dass der Median der signifikante Wellenhöhe h̃s in Abhängigkeit von der Windgeschwin-
digkeit v mit h̃s = c6 + c7v

c8 ansteigt, wobei c6, c7 und c8 Parameter sind, die auf der Grundlage
empirischer Daten geschätzt werden. Der Vorteil dieser Modellstruktur ist, dass man c6 als den Teil
der signifikanten Wellenhöhe interpretieren kann, der nicht am gleichen Ort und zur gleichen Zeit
vom Wind erzeugt wird, und der zweite Term, der c7 und c8 enthält, als den Teil, der vom lokalen
Wind erzeugt wird. Dann ist c8 ein Parameter, der die Art der Windsee beschreibt. Ozeanographen
haben verschiedene Theorien für Windseen entwickelt, die unterschiedliche Werte für c8 implizie-
ren. Mithilfe der selben Datensätze wie in der Studie zum ersten Schritt, zeigt diese Arbeit, dass die
neuartige Modellstruktur die Abhängigkeit zwischen Windgeschwindigkeit und Wellenhöhe besser
beschreiben kann als die derzeit in technischen Richtlinien empfohlene Modellstruktur.

Der dritte Schritt, den diese Arbeit behandelt, betrifft die Frage, wie N -jährige Umweltextreme
definiert werden können, die zu einer N -jährigen Strukturantwort führen. Da die derzeit meistver-
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wendete Methode zur Definition solcher gemeinsamer Extreme, die inverse Zuverlässigkeitsmethode
erster Ordnung (IFORM), die Strukturantwort unterschätzen kann, wurde eine alternative Definiti-
on für gemeinsame Umweltextreme vorgeschlagen: N -Jahres-Umweltextreme können als die Gren-
ze einer Region höchster Wahrscheinlichkeitsdichte definiert werden, die im Durchschnitt einmal
alle N Jahre irgendwo überschritten wird. Wenn man die Antwort einer Offshore-Struktur bei den
Umweltbedingungen entlang einer solchenN -Jahres-Höchstedichtekontur bewertet, hat die höchs-
te Strukturantwort immer eine Wiederkehrperiode von mindestens N Jahren (unter der Annahme,
dass die Antwort deterministisch ist). Somit führt diese Definition für gemeinsame Umweltextreme
zu konservativen Entwurfslasten, unabhängig von den topologischen Eigenschaften der Antwort-
funktion. Konservative Entwurfslasten stellen sicher, dass eine Offshore-Struktur die angestrebte
Zuverlässigkeit erfüllt.

Diese drei Beiträge – zwei neue Modelle für die Langzeitverteilung der Umweltbedingungen und
eine neue Methode zur Definition gemeinsamer Umweltextreme – wurden in eine formale Beschrei-
bung des gesamten Entwurfsprozesses einer Offshore-Struktur integriert. Diese Methodik, um Ent-
wurfslasten zu bestimmen und die Strukturantworten zu evaluieren, basiert auf dem Prozess, der
in der internationalen Norm für das Auslegen von Offshore-Windkraftanlagen der Internationalen
Elektrotechnischen Kommission, der IEC 61400-3-1 Norm, beschrieben ist. Die Methodik wur-
de generalisiert, um auf jegliche Offshore-Strukturen anwendbar zu sein. Außerdem wurde die Be-
schreibung, wie Extremlastfälle gehandhabt werden sollen, verändert.

Die drei Beiträge dieser Thesis wurden auch in einer Open-Source-Software implementiert, wel-
che Forschern und Praktikern, die Offshore-Strukturen entwerfen oder analysieren, unterstützen
soll. Die Software enthält außerdem Stand-der-Technik-Methoden, die als Alternativen zu den Mo-
dellen und Methoden, welche in dieser Arbeit vorgeschlagen wurden, genutzt werden können. Sie
hat bereits externe Nutzer, zum Beispiel Ingenieure die Windkraftanlagen entwerfen.

Um die derzeitige Entwurfspraxis zu analysieren, wurde eine Fallstudie über die langfristige ma-
ximale Strukturantwort einer Offshore-Windkraftanlage durchgeführt. Die Fallstudie konzentrier-
te sich auf die Frage, wie genau Umweltkonturmethoden extreme Lasten schätzen können, die zur
50-Jahres-Strukturantwort führen. Es wurde festgestellt, dass Schätzungen, die auf Umweltkontur-
methoden basieren, zu einer starken Unterschätzung der extremen Strukturantwort führen können.
Dabei tragen verschiedene Quellen zum Gesamtfehler bei. In der Fallstudie war der Fehler aufgrund
der Vernachlässigung der kurzfristigen Variabilität der Strukturantwort besonders groß. Das Igno-
rieren der kurzfristigen Variabilität führt zu einer Unterschätzung von bis zu 28 % der wahren 50-
Jahres-Strukturantwort. Das deutet darauf hin, dass in der Zukunft die internationale Norm, die
die Auslegung von Windkraftanlagen regelt, Methoden zur Kompensation der Vernachlässigung der
kurzfristigen Variabilität aufnehmen sollte.

Abschließend werden Themen für zukünftige Forschungen vorgeschlagen. Es wäre interessant
zu untersuchen, welche Physik erklärt, warum Beobachtungen der signifikanten Wellenhöhe in et-
wa einer potenzierten Weibull-Verteilung folgen. Eine weitere interessante Frage ist, wie das aktuel-
le Wissen über den Klimawandel in die Methoden zur Definition extremer Belastungen einfließen
könnte. Schließlich wird die Idee diskutiert, die Konturmethode auch in anderen Feldern als der
Strukturauslegung einzusetzen. Im Allgemeinen beschreiben Konturen gemeinsame Extreme, die
als Anforderungen im Entwurfsprozess dienen. Solche Konturen könnten auch im Feld der Ergono-
mie nützlich sein, um Anforderungen für Variablen wie Körpergröße und Hüfthöhe zu definieren.
Potenziell könnte eine allgemeine Methodik für die Ableitung von extremen Produktentwicklungs-
anforderungen entwickelt werden, indem die Felder der Produktentwicklung und der Extremewert-
statistik miteinander verbunden werden.
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1 Introduction

1.1 Motivation

The majority of the Earth’s surface is covered by water. Humans use the seas and oceans to ship
goods, fish, and extract energy. While fossil energy is being extracted offshore since at least the 1940s
[144], in recent decades humans started to extract renewable energy at sea, mainly by converting
wind energy into electric energy. The first offshore wind turbine was deployed in Sweden in 1990
and had a rated power of only 220 kW [56]. Today, offshore wind turbines have power ratings of up
to 14 MW and rotor diameters of up to 220 m [71, 149]. These giant machines are seen as one of the
most important technologies to supply the world with renewable energy. While now offshore wind
only provides 0.3% of the global electricity supply [40, p. 16], the annually added wind capacity
steadily increases. In 2018 a total of 4.6 GW of new wind capacity was added [40, p. 15] and the
annual added wind capacity grew by a yearly rate of nearly 30% from 2010 to 2018 [40, p. 15].
If technology’s costs keep falling, offshore wind will keep growing and will play a big part in the
world’s future energy mix. Its energy potential exceeds the world’s total electric energy demand [43]
(Figure 1.1) and experts believe that costs will keep falling [266].

An important way to improve offshore wind turbines to enable them to produce electricity at
lower costs is increasing their size. Designing large, reliable, and cost-effective offshore wind turbines,
however, is challenging. Larger turbines become more flexible such that the interaction with the
environment becomes more important. The turbine is subject to the harsh offshore environment
where unsteady winds and waves are the main sources of environmental loads. These loads drive
the turbine’s design in the sense that the turbine’s structure must be strong enough to withstand
the loads but should be as light as possible because lighter structures are easier to transport, easier
to install and – as they require less material – often cheaper to produce. However, wind and wave
loads are difficult to predict because the weather itself is difficult to predict. Both, underestimating
and overestimating wind speeds and wave heights have undesired consequences: If environmental
loads are underestimated a design based on them will be unreliable and if the loads are overestimated
the resulting design will be too conservative (Figure 1.2). Too conservative means that, for example,
walls could be unnecessarily thick to withstand reasonable environmental loads.

Thus, to design a reliable yet lightweight offshore wind turbine, long-term environmental ex-
tremes need to be accurately predicted. Then, based on these extremes, loads can be estimated, which
then can be used to optimize the turbine’s structure to be as light as possible while withstanding these
loads. In this work, we will develop a methodology that supports designers in estimating the long-
term distribution of offshore environmental conditions and determining design loads based on this
distribution. Since any kind of offshore structure – wind turbine, oil and gas platform, or wave en-
ergy converter – is subject to wind and wave loads and benefits from a systematic way of determining
environmental loads in their design process, the methodology will be applicable to different kind of
structures. However, throughout the thesis, we will pay special attention to the design of offshore
wind turbines.
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Figure 1.1: Energy converted from offshore wind has steadily increased in recent years. Despite this, it provided
only 0.3% of the global electric energy supply in 2018. The potential for offshore wind exceeds the
current global electricity demand. Data sources: Historical data from [131], energy potential from
[43], total electric energy generation from [242].

Wind speed 

Wave height

Assumed environmental
extremes too high

Overly conservative design Assumed environmental
extremes too low

Unreliable design

Figure 1.2: The design of an offshore structure is driven by assumed design loads, which are based on inferred
long-term extreme values of wave height and wind speed. Overestimated design loads lead to an
overly conservative design (left) and underestimated design loads to an unreliable design (right).
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1.2 Problem description and research goal

1.2 Problem description and research goal

Offshore structures have been designed for many decades and most of these structures appear to
survive the typical environmental loads just fine. Does that mean that current design methodologies
are complete and smoothly guide designers through the process of estimating extreme environmental
conditions and determining design loads? Interestingly, current design guidelines and standards are
relatively vague at important steps regarding this process.

An important step in determining design loads is to choose a model that represents the true long-
term distribution of offshore environmental conditions. Engineering guidelines such as the widely
used “recommended practices” on environmental conditions and environmental loads by the clas-
sification society DNV [47] lay out different options for modeling a single variable, like significant
wave height or wind speed, without recommending one model over the other. Important standards
such as the International Electrotechnical Commission’s (IEC) standard on the design of offshore
wind turbines [129], recommend that a joint distribution of wind speed and wave height shall be es-
timated, but do not recommend which form this model shall have. Of course, an informal “common
practice” exists, and this common practice – with its models and their problems – will be reviewed in
Section 2.3. Nevertheless, caution and the lack of authoritative guidance that the authors of offshore
standards and guidelines use, seems to be appropriate as it reflects the state of research in the field:
The scientific literature does not contain a generally accepted model for the long-term distribution
of the significant wave height and offers even less agreement for the joint distribution of variables like
wind speed and wave height.

This lack of fundamental knowledge is likely responsible for the gaps in guidelines for the design
process of offshore structures. Gaps concern (1) the choice of distribution for the significant wave
height; (2) the choice of distribution for the joint distribution of wind speed, significant wave height,
and wave period; and (3) which type of joint extremes of environmental variables should be used to
estimate appropriate design loads.

The goal of this thesis is to address these three gaps in current design guidelines by providing new
fundamental knowledge on the distribution of offshore environmental conditions and on the pitfalls
of choosing joint extremes for the estimation of design loads. Then, this new knowledge shall be used
to create a “design support” for engineers (Figure 1.3): A novel methodology to determine design
loads for offshore structures will be proposed and its methods and models will be implemented as a
software package. The goal of the methodology and the software is to provide support to engineers
who design offshore structures. It should help them to better define extreme loads that an offshore
structure must survive in order to reach a given target reliability. Finally, a case study on the design
of an offshore wind turbine will be conducted.

1.3 Research approach and structure of this thesis

As this research aims to develop a methodology and software that support engineers who design off-
shore structures, it can be characterized as “design research.” Blessing and Chakrabarti [19] proposed
a methodology for design research projects that can be applied to any research that deals with design,
where they describe design as “those activities that actually generate and develop a product from a
need, product idea or technology to the full documentation needed to realize the product and to
fulfill the perceived needs of the user and other stakeholders.” In their design research methodol-
ogy (DRM) framework, they classify design research into four stages: research clarification, a first
descriptive study stage, a prescriptive study stage, and a second descriptive study stage (Figure 1.4).
They argue that different research projects could contain different combinations of these research
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stages. Within their framework, this thesis would be a type 5 research project: Based on a review-
based research clarification, a comprehensive descriptive study is conducted with the goal being a
better description of the offshore environment. Then, a comprehensive prescriptive study will be
conducted, where the outcome is a design support (the methodology to determine design loads and
the software that implements the methodology). Finally, an initial descriptive study that deals with
designing an offshore wind turbine will be used to evaluate the design support.

The structure of this thesis is based on the four research stages that are apparent in this work:
Chapter 2 comprises the research clarification; Chapters 3 and 4 present the first descriptive study
which aims to generate understanding about the probability distribution of offshore environmental
conditions; Chapter 5 investigates how joint extremes can be selected based on a given probability
distribution; Chapter 6 describes the outcome of the prescriptive study, the developed methodology
to determine design loads and its software implementation; and Chapter 7 comprises the second de-
scriptive study: a case study on the structural design of an offshore wind turbine. Finally, Chapter 8
will provide conclusions for the overall findings and provide an outlook for future research. Thereby
the macrostructure of this thesis follows the so-called “traditional: complex” theme that is described
by Paltridge [204]. Under this theme, after a general introduction and literature review, multiple in-
dividual studies are presented, each of them containing an introduction, a methods section, a results
section, and a discussion.

Some of these studies were published in journals (Chapters 3, 5, and 7, as well as parts of 6) or in
conference proceedings (Chapter 4). While the author of this thesis is the first author of these pub-
lications, important contributions were made by co-authors. The acknowledgement section and
a contribution section describe how other researchers contributed to this thesis. Note that many
sections in this thesis have been largely left unchanged from the original publications to avoid un-
necessary reformulations and to avoid having two conflicting versions of conducted studies in the
scientific record. Brief statements at the beginning of chapters state upon which publications they
are based.

New design support

Software implementing
the methodology

Knowledge on the long-term
distribution of o�shore
environmental conditions

Knowledge on the
consequences of selecting
joint extremes on design loads

Methodology to determine
design loads for 
o�shore structures

New knowledge

Figure 1.3: The goal of this research is to gain new knowledge on the long-term distribution of offshore envi-
ronmental conditions and in selecting joint extremes of environmental variables. This knowledge
shall be used to develop a “design support” for engineers, in particular, a methodology to determine
design loads for offshore structures and software that implements this methodology.
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1.3 Research approach and structure of this thesis

Research Clari�cation

Descriptive Study I

Prescriptive Study

Descriptive Study II

StagesBasic means Main outcome

Goals

Understanding

Support

Evaluation

Literature,
analysis

Empirical data,
analysis

Assumptions,
experience,

synthesis

Empirical data,
analysis

In this thesis

(1) Advancing the state of the art
of  modeling the long-term distribution
of o�shore environmental conditions,
(2) Developing a design support

(1) Better model for the distribution of 
signi�cant wave height,
(2) Better understanding of the joint 
distribution of environmental conditions

(1) Methodology that supports
engineers to determine design loads,
(2) Software that implements the 
methodology

Comparison of design loads based 
on environmental contour methods
and ideal design loads

Figure 1.4: Design research methodology framework after Blessing and Chakrabarti [19] and the main out-
comes of the research project described in this thesis.
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2 Theoretical background and
literature review

This thesis deals with designing offshore structures that withstand extreme environmental loads. In
this chapter we will lay out the theoretical background of the three main areas that are touched by the
thesis: designing (Section 2.1), extreme values (Section 2.2), and offshore structures (Section 2.3).

2.1 Engineering design theories and methodologies

2.1.1 Systematic engineering design

Engineering design deals with the creation of artifacts. The process of creating these artifacts, the
design process1, plays a vital role in the way companies bring new products to market. From a broad
perspective, the design process has great importance how humans shape the world: Everything arti-
ficial – opposed to the natural – was created via some form of this process.

Design researchers have developed models of the process, either based on empirical studies or based
on a prescriptive approach with the goal of supporting the process. A great variety of models of
the design process have been published, including Pahl and Beitz’s engineering design methodology
(Figure 2.1; [203]), which arose from mechanical engineering, Gero’s more abstract general-purpose
design process model [72, 73], and the V-model [214], which is now often associated with systems
engineering [36, 226]. Some models focus on specific aspects of designing, like Albert and Bur-
sac’s product generation engineering approach [3, 4] or Krause and coworkers’ approach to develop
modular product families [143]. Researchers have also proposed design methodologies for specific
artifacts such as offshore wind turbines [33, 146] and the design process of offshore structures will
be described in detail in Section 2.3. A recent extensive review on the wide range of general-purpose
design process models is provided by Wynn and Clarkson [269].

In addition to research that focuses on the design process, researchers have attempted to create
theories that deal with the description of artifacts and their creation more broadly. These theories
include Hubka and Eder’s theory of technical systems [120], Suh’s axiomatic design [233, 234], and
Hatchuel and Weil’s C-K theory [105, 106]. Statistics-based approaches – a category to which this
thesis will add to – include reliability-based design [165], robust design [29, 276] and design for six
sigma [271]. A recent overview of theories and models of design is provided in a book edited by
Chakrabarti and Blessing [28].

Usually, a design project starts with a high-level description of requirements, and it is considered
a task within the design process to refine these requirements. In the popular engineering design
methodology by Pahl and Beitz [203] the refinement of requirements is part of the stage “planning
and clarifying the task.” The outcome of this stage is a “requirements list” that holds a set of individ-
ual requirements. Requirements describe desired properties of a product and might deal with such

1Here, for simplicity, we use the term “design process” instead of the longer term “design and development process.”
However, any activities that some might consider to be rather called “development” instead of “design” are meant to
be included in our use of “design process.”
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2 Theoretical background and literature review

diverse aspects as function, geometry, aesthetics, law conformance, manufacturing, and economics.
The goal of the design process is to find a design solution that satisfies a set of requirements (see, for
example, [230, 259]).

Note that requirements are usually not static during the design process, as for example shown
by Almefelt et al. [5]. They found that in a design project in the car industry requirements were
adjusted, new requirements were created, and old requirements were discarded regularly. Fernandes
et al. [60] analyzed the causes for requirement changes at the aerospace company Rolls-Royce. The
three most common causes were that a previous description of a requirement was incomplete, that
traceability links or references changed, and that the customer changed the requirement.

McKay et al. [171] developed a representation scheme that can be used as a data structure for re-
quirements. Their work is based on the structure for a requirements list that was proposed by Pahl
and Beitz [203] and their representation can be summarized as follows: a requirements list has multi-
ple groups of requirements, and each requirement comprises (among others) a requirement context
and a requirement value. A requirement value can be either a quality, a quantity, or a reference to a
standard [171].

Note that some authors use terms different than “requirement list” including “product specifica-
tion” [171] and “product requirements document” [60] and these terms could have slightly different
meanings. In this work, we use the term “requirements list” and define it simply as a list of all require-
ments, where a “requirement” is a condition that a design must fulfill to be satisfactory. We choose
to represent requirements in a very simple form: each requirement has one or multiple requirement
values and a textual description (Figure 2.2). Of course requirements could be represented using a
more detailed structure as demonstrated, for example, by McKay et al. [171], Chen and Zeng [32],
Chen et al. [31] and Weissman et al. [262], but these details are not relevant for the goal of this re-
search.

In this work, we are concerned with a particular kind of requirement: the requirement that an
offshore structure must withstand a particular combination of environmental conditions. The goal
of the design process is to create a design that among others fulfills this kind of requirement. Meth-
ods that support designers in defining environmental conditions, estimating loads based on these
conditions and designing a structure that withstands these loads are being developed and analyzed
in the field of structural design.

2.1.2 Structural design: Load, response, and reliability

The goal of structural design is to create a structure that withstands the loads that can be expected to
occur during the structure’s lifetime. The structure’s “response” to these loads must be below a given
response threshold, sometimes called the “response capacity.” Loads of many structures are domi-
nated by environmental variables such as wind speed and wave height, which can be well described
as random variables. Thus, structural design makes heavy use of probability theory and we shall
introduce some mathematical notation before we describe the main concepts of structural design.

Throughout this thesis, we will use upper-case letters to describe random variables and lower-case
letters for the realizations of random variables. Let X be a random variable and x its realization.
Then

F (x) = Pr(X ≤ x) = p (2.1)

is the variable’s distribution function, f(x) its density function and Q(p) its quantile function:

Q(p) = F−1(x) = min{x : F (x) ≥ p}. (2.2)
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Figure 2.1: Pahl and Beitz’s description of the design process (adapted from [203] and [173]).
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Requirement

Textual
description

Random variable
describing environ-
mental conditions

Requirement
value

The wind turbine preserves structural integrity at a 10-min wind speed of 30 m s-1.

Requirement valueTextual description

Take a quantile

Figure 2.2: Representation of a requirement in this work. An environmental condition such as wind speed
is described as a random variable. That means that a probability distribution function associated
to wind speed needs to be established. To describe a requirement, a quantile of the environmental
conditions is used by evaluating the inverse distribution function at a given exceedance probabil-
ity. This quantile serves as a “requirement value.” A textual description and a requirement value
constitute a requirement.

As described, environmental conditions like wind speed and wave height are often modeled as
random variables. Let X represent an environmental variable that dominates the loads acting on a
structure. Then, load and response can also be conveniently expressed as random variables such that
the mathematics of structural design can be summarized as

R = h1(L) = h1[h2(X)] (2.3)

where R is the response, L is the load, X is the environmental variable, h1 is the function that trans-
formsL toR, andh2 is the function that transformsX toL. Note that a response can be a variety of
different quantities – it is simply the effect of a single load or a combination of loads on a structural
component or system, for example, internal force, stress, strain, displacement or motion (following
the definition used in IEC’s standard on offshore wind turbines [129], which uses the term “load
effect” instead of “response”). Figure 2.3 presents an illustration of the three random variables: en-
vironment X , load L, and response R.

The relationship between the environment, the load, and the response can also be written for the
random variable realizations such that the realized response r is:

r = h1(l) = h1[h2(x)], (2.4)

or rewriting h1[h2()] as a response function h() that directly relates an environmental variable to a
response quantity:

r = h(x). (2.5)

A structural design is considered good if the response r to a given environmental condition x is
below the response capacity rcap. Based on the response capacity, two states can be differentiated:

• If the response is less than the capacity, r < rcap, the structure survives and
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environment X
(e.g. wind speed)

response R
(e.g. angular de�ection)

load L
(e.g. pressure)

Figure 2.3: Illustration of the three random variables environmentX , loadL, and responseR. In this example
wind (the environment) causes pressure forces (the load) which leads to angular deflection of the
tower (the response).

• if the response is greater than or equal to the capacity, r ≥ rcap, the structure fails.

Then the structure’s reliability pR can be calculated as the probability that the response to a ran-
dom environmental condition is less than the response capacity:

pR = Pr(R < rcap) = Pr[h(X) < rcap]. (2.6)

Often a target reliability pR,target is prescribed as a requirement, meaning that the structure’s
reliability pR must be greater than or equal to this target reliability value:

pR ≥ pR,target. (2.7)

Vice-versa the probability of failure in a random environmental condition, pF , must be less than
the target probability of failure pF,target:

pF = 1− pR < pF,target. (2.8)

The environmental random variable X usually describes environmental states, meaning that a re-
alization x represents a characteristic value of an environmental phenomenon during a given state
duration TS . Since each realization has an associated duration, a reliability target also has an associ-
ated duration.

Generally, a “return period” or “recurrence period” describes the average time between two con-
secutive events that exceed a threshold. If one is interested in events that result in failure, the return
period at which failures occur is defined as:

TR =
TS

pF
, (2.9)
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Figure 2.4: Environmental variable space (X1, X2) separated into failure and survival regions. At environ-
mental states within the failure region the structure’s response exceeds the structural response ca-
pacity rcap resulting in failure. The probability content contained in the survival region is the
structure’s reliability pR and the probability content contained in the failure region is the failure
probability pF .

where TS and TR are given in the same units of time and it is assumed that the environmental states
of duration TS are independent and identically distributed (this assumption will be discussed later).
The return period is generally much larger than the sea state duration, TR ≫ TS . Typically, the
return period is in the order of years while the state duration is in order of minutes or hours. The
probability of failure pF is a probability and is dimensionless.

Similarly, the target return period, TR,target, relates to the target probability of failure:

TR,target =
TS

pF,target
. (2.10)

Many structures experience loads that arise from a combination of environmental variables. For
example, both, winds and waves, cause high loads on an offshore wind turbine. In such a case, it is
typical to describe the environment using a random vector X = (X1, X2, ..., Xd)

T with d ∈ N
being the number of load-relevant environmental variables.

When at least two environmental variables are load-relevant, it is often interesting to analyze at
which region in the environmental variable space a structure fails and at which it survives. The re-
gion that covers environmental states that cause structural failure is called “failure region” and the
region that covers environmental states that lead to responses that are acceptable is called “survival
region” [165, p. 9] (Figure 2.4). These two regions are separated by environmental states that cause a
response of exactly the response capacity. The set of these states is called “failure surface” or “failure
boundary.”

Often, the structural response increases as an environmental variable’s quantity increases – loads
usually increase as wind speed or wave height increases – such that it is often assumed that an extreme
environmental condition with a return period ofN years leads to a structural response with a return
period of N years. This assumption is often used to ensure that a structure fulfills a given reliability
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target. Let α denote the exceedance probability of an environmental condition. Then the N -year
environmental extreme x[N ] – sometimes also called N -year “return value” – can be written as

x[N ] = Q(1− α), (2.11)

where
α = pF,target =

TS

TR,target
. (2.12)

In words, the above equation states that the probability that an environmental condition is exceeded
in a random event of duration TS is the same as the target probability that the structure fails in a
random event of duration TS . Thus α is chosen based on the target probability of failure pF,target
and α determines the requirement value x[N ]. This relationship of α = pF,target, however, does
not generally hold and the reasons will be explained in the next paragraphs.

Let r̂[N ] denote an estimate for the true N -year structural response r[N ]. The true long-term
structural response can be obtained by evaluating the long-term distribution of the response, which
can be calculated by integrating the environment’s probability density function fx(x),

r[N ] = r :

∫︂
h(x)<r

fx(x)dx = 1− α. (2.13)

Assuming that theN -year response occurs at theN -year environmental extreme, however, yields the
relationship:

r[N ] ≈ r̂[N ] = h(x[N ]). (2.14)

Sometimes this simplification holds true: for a deterministic response function, r̂[N ] is exactly r[N ]

if the response function monotonically increases (Figure 2.5). If the response is non-monotonic,
however, r̂[N ] ̸= r[N ]. Thus, estimating the N -year response based on the N -year environmen-
tal extreme is only justified for monotonically increasing response functions. While many response
quantities do increase with environmental quantities, there are important exceptions: For example,
due to the controller, the forces acting on an offshore wind turbine do not monotonically increase
with wind speed. The case study to be presented in Chapter 7 will describe this effect in detail. Fig-
ure 2.5 shows one monotonic and one non-monotonic response function and how it influences
the estimate r̂[N ]: For the monotonically increasing response function, the estimate of the response
return value is equal to the true return value (r̂ = r; Figure 2.5d), but for the non-monotonic re-
sponse function, the estimate of the response return value differs from the true return value at many
exceedance probabilities (r̂ ̸= r; Figure 2.5e). The response is overestimated for exceedance prob-
abilities of about 10−1 and underestimated for very low exceedance probabilities such as 10−4 or
10−5. This effect is due to the peak of the response function at medium wind speed. It peaks at a
wind speed value, which has a non-exceedance probability of approximately 10−1. Note that if r[N ]

cannot be estimated well as h(x[N ]), assuming that α = pF,target will result in some bias: the true
probability of failure will be under- or overestimated. While Figure 2.5 shows the univariate case
(only one environmental variable is considered), similar problems apply in multivariate cases. The
multivariate case will be described later in this chapter, when the environmental contour method is
introduced (Section 2.3.2), and in Chapter 5 where a new contour method is proposed.

In structural design, the target return period is typically in the order of years while the environ-
mental state’s duration is typically in the order of minutes or hours such that the exceedance proba-
bility α is very small. For example, if we are considering hourly sea states and if we are interested in
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2.2 Extreme values in engineering design

designing a structure with a target return period of 50 years, we would have a target probability of
failure pF,target and consequently an exceedance probability α of

α = pF,target =
1 hour

50× 365.25× 24 hours
≈ 2.28× 10−6 (2.15)

Then the 50-year environmental extreme x50 is

x50 = Q(1− 2.28× 10−6), (2.16)

and the true 50-year response r50 could be approximated as the response that occurs at the 50-year
environmental extreme r̂50:

r50 ≈ r̂50 = h(x50). (2.17)

Based on that approximation we can design a structure with a target probability of failure of
pF,target = α = 2.28 × 10−6 by ensuring that it has a structural capacity of rcap = r̂50. If
the true 50-year response r50 is greater than the approximated r̂50, our structure will have a too high
true probability of failure (pF > pF,target) and if the true 50-year response is less than r̂50, we will
have a too low probability of failure (pF < pF,target). Thus, it is very important how r50 is esti-
mated. In Section 2.3 we will describe in detail how the extreme response is typically estimated in
the design process of offshore structures.

One important step in estimating the long-term extreme response of an offshore structure is mod-
eling the probability distribution of environmental conditions. As rare environmental events often
dominate the extreme response, modeling extreme values is especially important. Thus, the next
chapter introduces extreme value theory.

2.2 Extreme values in engineering design

2.2.1 Univariate extremes

While many statistical methods focus on “typical” values of a variable, as described with the average
or the median, extreme value theory deals with the tails of a probability distribution. It deals with
very small and very large quantiles in the sense that it is concerned withQ(p = α) orQ(p = 1−α)
instead of any Q(α < p < 1 − α) where α describes the probability of exceedance and Q() the
quantile function (Expression 2.2). Note that there is no generally accepted upper limit for α to call
the quantile an “extreme value.” Instead, in statistics textbooks, extreme values are usually defined
based on their broader meaning of being maxima or minima of time series or of subsamples (see, for
example, [15, 26, 39]).

Important univariate extreme value models include distributions that arise when a sample holds
maxima or minima from subsamples as well as distributions that arise when only observations above
(or below) a particular threshold are considered (Figure 2.6). It can be mathematically shown that
these extreme value distributions arise when the considered extremes are independent and identically
distributed (IID). If the underlying data are time series that describe the dynamics of a system such as
the response of an offshore structure, making sure that the extremes are indeed IID can be difficult.
If maxima of subsamples are considered, it requires defining the block length of which maxima are
taken and if peaks over a threshold are considered, it requires choosing an appropriate threshold.
Both, selecting a block length and a threshold, represents a decision where one needs to balance
the amount of data points one obtains from the original time series (longer blocks mean less data
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Figure 2.6: Approaches to model extreme values.

points) versus the degree of independence of the resulting extremes (longer blocks mean stronger
independence).

Extremes of subsamples can be described using the generalized extreme value distribution:

F (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

(︃
− exp

(︃
−x− µ

σ

)︃)︃
, ξ = 0,

exp

(︄
−
(︃
1 + ξ

x− µ

σ

)︃−1/ξ

+

)︄
, ξ ̸= 0,

(2.18)

where (·)+ = max{·, 0}. The distribution has three parameters: a location parameter µ, a scale
parameter σ and a shape parameter ξ. It generalizes the Gumbel distribution (which has ξ = 0) the
Fréchet distribution (ξ > 0) and the reversed Weibull distribution (ξ < 0).

Observations above a threshold are typically described using the generalized Pareto distribution.
This distribution also has three sub-families, which relate to the sub-families of the generalized ex-
treme value distribution. For further reading, the reader is referred to the textbook by Castillo et al.
[26] that introduces extreme value theory for engineers and scientists.

As an alternative to distributions that only describe extremes, “global models” that describe the
full range of data can be used to estimate extreme values. Global models often provide worse model
fit at the distribution’s tail, but avoid the problem of dealing with multiple, possibly deviating mod-
els for a single dataset when designers are interested in both, typical and extreme values. Currently,
global models are widely used in engineering. For example, in structural engineering maximum val-
ues of the wind speed are often obtained by fitting a Weibull distribution to a global dataset (see, for
example, [155]). This approach of modeling is sometimes called the initial distribution method (see,
for example, [47, section 3.6.1.4 ]).

2.2.2 Multivariate extremes

In multivariate cases X = (X1, ..., Xd)
T , d ∈ N denotes the random vector that comprises d

random variables. Its associated joint distribution function isF (x) and its density function is f(x).
Like univariate extreme value theory, multivariate extreme value theory provides plenty of statistical
models for extremes (see, for example, Beirlant et al. [15] for an overview).

However, while the distribution function and the density function – similar to the univariate
setting – are uniquely defined, the multivariate quantile function can be defined in various ways.
There is no single quantile function that is preferred by statisticians, and researchers are actively
proposing definitions for quantiles [55, 87]. Because extreme values are defined with the quantile
function [15] (Expression 2.2), no unique definition for multivariate extremes exists.
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Figure 2.7: Sketches of possible definitions for bivariate exceedance. Although each exceedance region holds
the same amount of exceedance probability α the resulting design regions (hatched areas) greatly
differ.

Consider bivariate exceedance. In the bivariate case an “exceedance boundary”2 separates the two-
dimensional variable space into a non-exceedance region and an exceedance region (Figure 2.7). In
this work, we call the region that is not exceeded by one or multiple exceedance regions “design re-
gion” (Figure 2.7). We can find several regions of exceedance that contain probability α, each based
on a different definition. However, depending on the context one definition could fit better than
another. Suppose we are interested in maximum ocean wave heights at different wave periods. Let
the random variables X1 and X2 describe wave period and wave height respectively. In this context
it might be useful to define a set of bivariate maxima – an exceedance boundary – by searching for
the curve of constant probability density that is exceeded in X2-direction with a probability of α.
Such a curve holds joint extremes of wave height and period – with high values of the wave height,
X2, and associated values of the period, X1. A similar definition has been proposed by Haver [109,
110].

Now consider that we are not primarily concerned with high values of one variable, but of both
variables. Then, it might be more advantageous to define bivariate maxima by defining exceedance
using two thresholds, x1 and x2: Pr(X1 > x1 ∩X2 > x2) = α (AND exceedance in Figure 2.7).
Serinaldi [227] presented an overview of common definitions for bivariate exceedance and proposed
names for the various probabilities of exceedance.

Figure 2.7 shows four sketches of possible definitions for bivariate exceedance, which we consider
to belong to the broader categories of “AND exceedance,” “OR exceedance,” “angular exceedance,”
and “isodensity exceedance” (the mathematical definitions for these different exceedance probabili-
ties are given in the appendix). Figure 2.8 presents exceedance boundaries where these four defini-
tions were applied to the same joint distribution. Although each exceedance region holds the same
amount of exceedance probability α the resulting exceedance boundaries and design regions greatly
differ. In addition, the amounts of probability contained within the design regions differ: While in
some bivariate concepts for exceedance the design region probability is pDR = 1 − α, other defini-
tions yield design regions that contain less than 1− α probability content.

In summary, extreme value theory deals with the tails of a distribution. Models that are used to
define extreme values might describe (1) the whole range of a dataset (global models), (2) the subset of
a dataset that exceeds a particular threshold, or (3) the maxima (or minima) of multiple subsamples.
In engineering design, extreme value theory can be used to define the boundary of a design region.

2We use the term “exceedance boundary” as it can be used irrespective of the number of dimensions of the probability
distribution. The exceedance boundary can be a threshold (univariate distribution), a curve (bivariate joint distribu-
tion), a surface (three-dimensional distribution) or a hypersurface (distribution with d > 3 dimension). The term is
used, for example, by Huseby et al. [124].
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Figure 2.8: Example of different bivariate exceedance definitions and the resulting exceedance boundaries. Al-
though all exceedance boundaries were calculated with the same value of α = 0.1 and the same
joint distribution, their shapes are vastly different.

A design region is defined in this thesis as the region in the environmental variable space that must
be considered for loads. Defining the design region based on a univariate distribution is straight-
forward because the quantile function is uniquely defined. Defining the design region based on a
multivariate distribution, on the other hand, requires further thought because alternative definitions
for the multivariate quantile function exist.

2.3 Designing offshore structures

Offshore structures are structures located in the ocean, off shore. They can be grouped into (1) struc-
tures that, once installed, stay at one geographical place; and (2) structures that are in motion much
of the time. Geographically fixed structures include bottom-fixed offshore wind turbines, floating
offshore wind turbines, tidal energy converters, wave energy converters, bottom-fixed oil and gas plat-
forms, floating production storage and offloading units (FPSO; these are structures used in the oil
and gas industry), cross-sea suspension bridges, and floating bridges (Figure 2.9). Moving offshore
structures are various kinds of vessels such as boats, container ships, bulk carriers, and oil tankers.

These offshore structures experience loads that arise from waves, currents, and – if they are not
fully submerged – winds. While designing an offshore structure involves a great variety of tasks, esti-
mating loads for the structural design is especially challenging as the ocean environment is difficult to
model: Multiple environmental variables are load-relevant and these variables are quantities that de-
scribe outputs of complex physical processes. Meteorologists use today’s most powerful computers
to model these processes in weather and climate simulations.

As in any other design project, the process of designing an offshore structure starts with clarifying
the design task and then – according to Pahl and Beitz’s methodology – by defining a requirements
list (Figure 2.1). If the offshore structure of interest is to be deployed at a fixed location, many re-
quirements will be based on environmental variables at this location. For example, design standards
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Figure 2.9: Offshore structures that, once installed, stay at one geographical place. (a) Bottom-fixed offshore
wind turbine. (b) Floating offshore wind turbine. (c) Tidal energy converter. (d) Wave energy
converter. (e) Bottom-fixed oil and gas platform. (f) Floating production storage and offloading
unit (FPSO; an offshore structure that is used in the oil and gas industry). (g) Cross-sea suspension
bridge. (h) Floating bridge.
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for offshore wind turbines [129] require structural design checks based on the site’s 50-year extreme
wave height. Thus, an important part of the design process is first describing the site-specific offshore
environment and then deriving requirement values based upon this description. In IEC’s standard
on offshore wind turbines [129] these activities are summarized in the design process’ step to define
the “site-specific external conditions.” These conditions, and other requirements, are then used to
define a “design basis” for the offshore wind turbine (Figure 2.10a; [225, 260]). The term “design
basis” describes a type of requirements list that is common in wind turbine structural design (see
references [66, 208] for two published design bases). Then, the standard proposes that the designer
creates a support structure design and a design for the rotor nacelle assembly (RNA). These designs
are then evaluated using standardized load cases. Load and load affect calculations are performed and
the results are used in a “limit state analysis” to check whether the support structure design and the
RNA design preserve structural integrity. A limit state analysis describes the process of analyzing at
which extreme environmental conditions a structure fails and which it survives using factored loads
and material properties [165].

The steps of the design process of an offshore wind turbine can be generalized to describe the
design process of an arbitrary offshore structure. We can organize the design process using six con-
secutive steps (Figure 2.10b):

1. Define the site-specific external conditions.

2. Define the design basis for the offshore structure.

3. Create a design for the offshore structure.

4. Use standardized design load cases.

5. Perform load and response calculations.

6. Perform a limit state analysis. In case structural integrity is ensured, the design is completed
and in case it is not ensured the design must be altered.

The first step of this process, the definition of the site-specific external conditions, uses statistics to
describe the offshore environment. The following section deals with this aspect.

2.3.1 Statistical description of the offshore environment

The typical representation of the offshore environment is to assume that the long-term evolution
of environmental conditions can be considered as a sequence of stationary processes [190]. That is,
the random process associated with a certain environmental condition is assumed to be stationary
for fixed time intervals of equal length. Common choices for the state duration are TS = 10min,
TS = 1 hour, or TS = 3 hours. The statistical description of the environment during the state
duration is then referred to as “short-term statistics” while so-called “long-term statistics” are used
to describe the environment on a timescale of years. Long-term statistics deal with parameters that
are time-integrated over the state duration TS like the significant wave height or the 1-hour mean
wind speed. These time-integrated variables often parametrize spectra that describe the short-term
statistics. The basis of the spectra could be the water surface elevation or the wind’s instantaneous
velocity. All environmental variables that are associated to meteorology and oceanography are often
summarized as “metocean variables” in offshore structural design.

Offshore, ocean waves are the most prominent environmental phenomenon. In the statistical ap-
proach [200], for a duration of a few hours, waves are assumed to be well-described as a stationary
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Figure 2.10: (a) The design process of an offshore wind turbine according to IEC’s standard 61400-3-1 [129].
The numbers in parenthesis refer to chapters within the standard. RNA = rotor nacelle assembly.
(b) Main steps when designing an arbitrary offshore structure according to the author of this
thesis.
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Figure 2.11: JONSWAP spectrum with different peak enhancement factors, γ. A peak enhancement factor of
3.3 is often assumed for sea states in the North Sea. If γ = 1 the spectrum becomes the modified
Pierson-Moskowitz spectrum. Both plotted spectra have a peak period of Tp = 8 s (0.125 Hz
peak frequency) and a significant wave height of Hs = 1m.

process whose properties are summarized as a “sea state.” A sea state is represented using a spectrum
that describes how the variance of the water surface elevation is distributed over different frequen-
cies. Typical shapes of ocean wave spectra have been reported – among them the Pierson Moskovitz
spectrum [205], which describes fully developed wind seas, and the JONSWAP spectrum [104],
which describes typical sea states in the North Sea (Figure 2.11). If a spectrum is assumed to follow
the Pierson Moskovitz or a JONSWAP spectrum with a given peak enhancement factor, it can be
parameterized using only two variables: one variable that describes the amount of variance and one
that describes a typical frequency of the sea state.

To interpret a “variance spectrum” (or as a synonym “energy spectrum,” “power spectral density,”
“spectral density,” or just “spectrum” [191, p. 16]), it is useful to briefly introduce the fundamentals
of what constitutes a “stationary process” and how the variance spectrum relates to properties of this
process. A stationary process is a special kind of “stochastic process.” While the outcomes of a ran-
dom variable are scalars, the realizations of a stochastic process are time series (Figure 2.12). LetX(t)
represent a stochastic process and x(t) its realization. A stochastic process is (weakly) stationary if
the expected value of the process E[X(t)] and its autocorrelation function E[X(t)X(t + τ)] are
both independent of time [191, p. 152], where τ represents a time delay, τ ∈ R. When ocean waves
are described as a stationary process, X(t) represents the water surface elevation.

The variance spectrum is often denoted as SX(ω) and is defined as the Fourier transform of the
autovariance function CX(τ) [191, p. 161]:

SX(ω) =
1

2π

∫︂ ∞

−∞
CX(τ)e−iωτdτ, (2.19)

where CX(τ) = E[(X(t)−mX)(X(t+ τ)−mX)] with mX = E[X(t)].

Because CX(τ) and SX(ω) constitute a so-called Fourier transform pair, CX(τ) can also be ex-
pressed as an integral of SX(ω):

CX(τ) =

∫︂ ∞

−∞
SX(ω)eiωτdω. (2.20)
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Figure 2.12: An ensemble of realizations of a stationary stochastic process. X(t) is normally distributed and
the expected value E[X(t)] does not change over time. The process’ autocorrelation function
E[X(t)X(t + τ)] is independent of time as well. This figure is inspired by Figure 5.6 in Naess
and Moan’s textbook [191].

When τ = 0 the autovariance function returns the normal variance σ2
X :

σ2
X = CX(0) =

∫︂ ∞

−∞
SX(ω)dω, (2.21)

which shows how the spectrum relates to the variance of the sea surface elevation. Consequently a
variance spectrum can be interpreted as the variance’s distribution over different frequencies.

Note that SX(ω) is defined based on angular frequencies ranging from −∞ to +∞ and that the
function is symmetric in the sense that SX(−ω) = SX(ω) [191, p. 162]. Since physically, only
positive frequencies exist and as many researchers prefer the frequency f over the circular frequency
ω for ease of interpretation, the spectrum is often expressed as a one-sided variance spectrum as a
function of the unit Hertz:

G+
X(f) =

{︄
4πSX(ω) if ω ≥ 0,

0 if ω < 0,
(2.22)

where ω = 2πf .
As noted previously, if the form of the spectrum is known, two parameters are often sufficient to

fully describe a spectrum. These parameters are usually defined based on the spectrum’s statistical
moments m̃j :

m̃j =

∫︂ ∞

0
f jG+

X(f)df, j = 0, 1, 2, ... (2.23)

The most common variable to describe a sea state’s intensity – a measure for the variance of the
water surface elevation over time – is the “significant wave height” Hs:

Hs = 4
√︁
m̃0 = 4σX . (2.24)
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Figure 2.13: One month of metocean data measured with a buoy that is moored at the US East Coast (Buoy
NDBC 44007).

To describe a characteristic frequency or period of the spectrum, multiple types of periods are com-
mon. A typical choice is the mean “zero-up-crossing period”Tz sometimes simply called “mean wave
period,” which is the square root of the ratio of the zeroth moment over the second moment:

Tz =

√︃
m̃0

m̃2
. (2.25)

Other typical choices are the “energy period,” Te = m̃−1/m̃0, and the “spectral peak period” Tp,
which is the period with the highest spectral density.

The long-term distribution of sea states is therefore often represented by a joint probability distri-
bution of variables such as significant wave height and zero-up-crossing period, FHs,Tz(Hs, Tz) =
Pr(Hs ≤ hs, Tz ≤ tz). Figure 2.13c shows a scatter diagram of sea states, measured with a buoy
that is moored at the US East Coast. To fully describe the offshore environment, one might be
interested in additional variables, such as the mean wind speed V , which would lead to a three-
dimensional joint distribution: FV,Hs,Tz(V,Hs, Tz) = Pr(V ≤ v,Hs ≤ hs, Tz ≤ tz).

To achieve a handy formal description of an offshore environment, parametric probability distri-
bution models are often fitted to raw data such as the buoy measurements shown. Raw data can be
derived either from measurements or from high-fidelity computer simulations, so-called “climatic re-
analysis” or “hindcasts.” Depending upon the load case of interest, sometimes establishing a univari-
ate probability distribution is sufficient, while at other times a multi-dimensional joint probability
distribution is required.

Similar as already described for generic variables in Section 2.2.1, when univariate distributions
of variables such as significant wave height or wind speed are modeled, two different approaches ex-
ist: “global models” and “event models.” In a global model, a distribution is fitted to the complete
dataset. Often simple parametric distributions with 2 to 5 parameters are used, for example, the
common 2-parameter Weibull distribution, the translated Weibull distribution, or the log-normal
distribution. Event models, however, are only concerned with extreme events. Thus, these models
do not describe the complete range of a dataset but only certain extremes. A review on modeling
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extremes of metocean variables is provided by Jonathan and Ewans [133]. Two kinds of event mod-
els are commonly used: In the “annual maxima method,” a time series of metocean data is separated
into yearly blocks, their maxima are identified and a distribution is fitted to these maxima (sometimes
also shorter blocks with lengths of days or weeks are used [172, 223]). In the “peaks over threshold
method,” only metocean data above a defined threshold is considered for modeling. Detailed reviews
on the various models that are used to fit the marginal distributions of significant wave height and
wind speed were presented by Muir and El-Shaarawi [183] and Jung and Schindler [140], respec-
tively.

Global models and event models have different weaknesses and strengths: Global models use all
data points and therefore use the maximum amount of information available. However, subsequent
data points in a time series of a metocean variable are strongly correlated (Figure 2.14) such that
the model assumption that observations are independent and identically distributed is violated. If
one treats such correlated data as if they were independent, one introduces bias (see, for example,
Mackay et al. [159]). The observations that are used to fit event models are much more independent,
however, much information is lost by discarding the majority of data points when these models are
fitted. Therefore, the uncertainty of estimates is higher.

The effect of serial correlation in offshore environmental conditions received much attention re-
cently because global models are widely used and often serial correlation is not accounted for [91].
Extremes of environmental conditions typically occur in clusters. For example, in a hourly time
series often multiple very high Hs values occur during a single storm. The effect of this serial cor-
relation can be quantified with the extremal index (see, for example, [64, 147, 174]). The extremal
index θ ∈ [0, 1] describes the inverse of the mean cluster size [174]. Thus, extremes of time series
with θ = 1 are independent while extremes in time series with θ < 1 have some degree of serial
dependence. While the extremal index describes correlation at asymptotically high levels, the sub-
asymptotic extremal index θx can be used to characterize extremes at quantiles relevant to structural
design [159]. Mackay et al. [159] showed that θx = T̃R(x)/TR(x), where TR(x) is the true return
period of environmental conditionx, and T̃R(x) is the return period of the equivalent independent
time series. The equivalent independent time series is the sequence that would be obtained by ran-
domizing the order of observations in the serially correlated time series. Thus, if correlated events
are used as if they were independent events, the return period of the level x is underestimated. This
implies that quantiles from a distribution function that was derived from serially correlated data
overestimate the true return values. If θx is known, the effect can be compensated. Eastoe and Tawn
[50] estimated θx to derive unbiased estimates of return values. Of course performing this compen-
sation requires that θx is estimated accurately as the uncertainty of the estimate of θx is incorporated
into the estimation of return values.

Multivariate models can be classified into global models and event models as well. In global mod-
els, a widely used model structure is the so-called “global hierarchical model” (some researchers also
use the term “conditional modeling approach”; see, for example, [17, 156]). In these models one vari-
able is independent while all other variables depend on at least one other variable. The dependence
structure is usually modeled using simple dependence functions with 2 to 4 parameters (see, for ex-
ample, [118, 151]). Currently, to model the long-term distribution of sea states, the classification
society DNV recommends assuming that significant wave height follows a translated 3-parameter
Weibull distribution, and that zero-up-crossing period follows a lognormal distribution that is con-
ditional on significant wave height [47, p. 77]:

FHs(hs) = 1− e−[(x−γ)/α]β , (2.26)
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Figure 2.14: Serial correlation between hourly measurements of significant wave height Hs. Hourly observa-
tions are not independent but are strongly correlated. Seasonality is also apparent in the data:
observations with a delay of about half a year are negative correlated while observations with a
delay of about a year are positively correlated. The data was measured with a buoy that is moored
at the US East Coast (Buoy NDBC 44007).
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FTz |Hs
(tz|hs) =

1

2
+

1

2
erf

(︃
ln tz − µ√

2σ

)︃
, (2.27)

where erf is the error function and the parameters µ and σ are functions of the wave height hs:

µ = c1 + c2h
c3
s , (2.28)

σ = c4 + c5e
c6hs . (2.29)

The parameters α, β, γ, and c1, ..., c6 are estimated by fitting the model structure to a dataset.
A similar distribution is recommend by DNV for the joint distribution of significant wave height

and wind speed [47, p. 78]. These models, or slight adaptations of them, are also often used by
academics who study the design of offshore wind turbines. In their study on design loads on an
offshore wind turbine, Liu et al. [155] assumed that wind speed follows a 2-parameter Weibull dis-
tribution, significant wave height follows a 2-parameter Weibull distribution that is conditional on
wind speed, and spectral peak period follows a log-normal distribution that is conditional on wind
speed and wave height. They modeled the dependence structure with simple parametric functions
with three parameters for each function.

Another way to define a global multivariate model is to utilize copulas. A copula is a multivari-
ate joint distribution, which has uniform marginal distributions in the interval [0, 1]. It can be
used to describe the dependence structure between variables such that a global multivariate model
can be designed by using one marginal distribution for each environmental variable and a copula
to describe the dependence between the variables. In the last 10 years Silva-González et al. [228],
Montes-Iturrizaga and Heredia-Zavoni [176], Vanem [244, 248], Montes-Iturrizaga and Heredia-
Zavoni [177], Manuel et al. [166], Fazeres-Ferradosa et al. [58], Zhang et al. [275], Heredia-Zavoni
and Montes-Iturrizaga [113], Lin et al. [154], and Huang and Dong [119] applied different types of
copula models to metocean variables. Finally, global models based on kernel density estimation can
be used as global models too [52, 62, 99].

Multivariate event models have been proposed more recently. Currently, they play a minor role
in technical standards and studies on offshore structures, however, they are increasingly used in aca-
demic studies on joint extremes of metocean variables. In 2004, Heffernan and Tawn [111] proposed
a conditional extreme value model that has gained popularity. Jonathan et al. [135] and Mackay and
Jonathan [163] used the Heffernan and Tawn model to estimate the bivariate distribution of peak
significant wave height and wave period. Mackay and Jonathan [163] also used it to estimate the
bivariate distribution of peak wind speed and significant wave height. Extreme value models and
models for the bulk of the data can be combined too: Such a blending of models has been demon-
strated, for example, by Mackay and Jonathan [163] and Qiao and Myers [206]. The work of Mazas
[170] presents a frame work for assessing natural hazards where he carefully defines what multivariate
environmental extremes are and how they relate to the physical processes that cause such extremes.

The typical approach to modeling the long-term distribution of environmental variables is based
on the idea that future environmental conditions will be like past environmental conditions. How-
ever, as the climate is changing, the long-term distribution of variables such as wind speed and wave
height will be affected as well. Young et al. [272] investigated global changes in oceanic wind speed
and wave height using satellite altimeter measurements over a period of 23 years. They found that
mean wind speed increased at most locations, while the trend for significant wave height was less
clear. Extreme wind speeds and extreme significant wave heights, in their paper defined as the 90th
percentile, both increased stronger than the mean values. Hemer et al. [112] studied how wave cli-
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mate changed between a 30-year period in the recent past and a projected 30-year period in the future
using climatic computer models. The period that was considered to represent present climate cov-
ered the years between 1979 and 2009 and the future period was from 2070 to 2100. They found
that – between the two periods – mean significant wave height increases at 7% of the ocean’s area,
but decreases at 26% of the area.

Modeling future wind-wave climate is subject to high uncertainty. Much of the uncertainty is
due to differences in modeling approaches. By comparing projections from different wave mod-
els, Morim et al. [181] found that 50% of the uncertainty is due to modeling differences. Despite
the uncertainty, they identified statistically robust changes in many regions of the world. For both,
mean significant wave height and the 99th percentile significant wave height, they found some re-
gions where these variables increase and some regions where these variables decrease. Overall, the
studies on climate change show that (1) metocean variables such as wind speed and wave height are
affected by a changing climate; (2) extreme values might be affected stronger than mean values; and
(3) wind speeds are expected to increase in most regions of the world while wave heights are expected
to increase at some regions, but decrease at other regions.

Researchers have developed approaches on how climatic trends can be accounted for in proba-
bilistic models of metocean variables. One approach that was proposed to apply to significant wave
height [251], is to first identify the yearly trend of how the wave height’s expected value changes and
how its variance changes. Then, one uses the trend to alter a parametric distribution that was pre-
viously fitted to a metocean dataset [251]. Vanem [249] applied various methods to derive extreme
values of significant wave height and considered a scenario without climatic changes and two scenar-
ios with climatic changes. His study shows that, both the extreme value modeling approach and the
modeling of the climatic trend greatly contribute to the uncertainty of 20-year and 100-year return
values of the significant wave height. Climate change also affects the joint distribution of environ-
mental variables. Vanem [248] explored how different bivariate models of significant wave height
and zero-up-crossing period can be used to model climatic changes.

Climate changes over many years, changes in shorter timescales such as the seasons [247], and
in general the complexity of the physical process that are involved in how winds and waves evolve in
time, contribute to the uncertainty of a statistical model of offshore environmental conditions. Con-
sequently, univariate and multivariate return values, which are derived from these statistical models
are subject to uncertainty too. Researchers analyzed how a joint model’s uncertainty affects joint ex-
tremes derived from the model [175, 229] and how the sampling uncertainty due to the finite length
of a metocean dataset affects joint extremes [79, 252]. In a benchmarking study co-organized by the
author of thesis [92], the uncertainty associated to joint extremes was analyzed as well. In this study
uncertainty was classified into different sources:

• uncertainty associated with the quality of the metocean dataset, for example, due to systematic
biases in measurements or hindcast models;

• uncertainty due to limited sample size and sampling variability;

• uncertainty associated with choosing a model for the joint distribution (all statistical models
that describe wind and wave can be considered to have some degree of model misspecification);

• uncertainty associated with choosing a type of parameter estimation technique (for example,
maximum likelihood estimation versus the method of moments or least squares estimation);

• uncertainty associated with setting hyper-parameters in the parameter estimation technique
(for example, the number of intervals that are used when data are binned);
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• uncertainty associated with how the climate will change;

• uncertainty associated with the numerical methods used in deriving joint extremes, for exam-
ple, due to the used numeric integration method or due to the applied Monte Carlo method;
and

• uncertainty associated with which definition for multivariate extremes shall be used for the
application of interest (this type of uncertainty refers to the so-called environmental contour
method and its approximation of the failure region; the contour method will be introduced
later in this chapter).

Unfortunately, these sources are often difficult to quantify in design projects. However, proce-
dures such as using safety factors are meant to compensate for the possibility that loads are underes-
timated, due to uncertainty.

In summary, when the offshore environment is modeled, it is common to differentiate between
two timescales: Short-term statistics describe how the environment behaves within a timescale
of minutes or hours, while long-term statistics describe how the environment behaves within a
timescale of years. The short-time statistics are described using variance spectra while long-term
statistics are described using probability distributions of parameters that describe these variance spec-
tra. Sometimes it is useful to describe the long-term distribution of a single variable while at other
times joint distributions are required. Models for long-term distributions might be classified as global
models or as event models. Some environmental variables are affected by robust trends due to a
changing climate. If such a trend can be quantified it can be used to alter the distribution that has
been fitted to a metocean dataset.

Next, we will focus on what to do after a satisfying model for the offshore environmental con-
ditions has been established – that is, using this model to derive the requirement values of environ-
mental variables, that must be used to derive design loads. Requirement values must be derived as
part of defining a design basis (step 2 in Figure 2.10b).

2.3.2 Determining requirement values of environmental variables

Offshore structures usually have multi-decade design lives. For example, offshore wind turbines are
usually designed to safely operate 20 to 25 years [21]. Based on this design life, requirement targets
are formulated. For example, one might set the target reliability based on the idea that within a design
life of 20 years structural failure shall occur with a probability of less than 1%, pF,target,DL = 0.01.
If environmental states with state durations of 1 hour are considered as independent events, this idea
would translate to a target probability of failure per environmental event, pF,target, of

pF,target = 1− (1− pP,target,DL)
1/n (2.30)

wheren is the number of environmental states that occur during the design life,n = 20×365.25×
24 = 175, 320. Thus

pF,target = 1− (1− 0.01)1/175,320 ≈ 5.7× 10−8. (2.31)

This target probability of failure would translate to a target return period of approximately 2000
years:

TR,target =
TS

pF,target
=

1 hour
5.7× 10−8

≈ 1.74× 107 hours ≈ 2000 years (2.32)
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Such return periods, however, would require extensive extrapolation because datasets from hindcasts
or buoys typically cover between 10 and 50 years. Therefore, such high return periods are usually not
calculated for structures such as offshore wind turbines.

Instead, many standards do not prescribe a value for the probability that failure occurs during the
structure’s lifetime. Instead, they prescribe various target return periods for environmental condi-
tions with the aim that these environmental conditions lead to theN -year response (see, for example,
[129, p. 24]). For offshore wind turbines, designers are often asked to ensure that the turbine survives
the 50-year response by ensuring that it survives loads from environmental conditions with a return
period of 50 years (see, for example, [129]). This process is criticized by Serinaldi [227] as these return
periods somewhat distract the attention from the true variable of interest, which is the probability
of failure during the design life. Furthermore, as described in Section 2.2.2, there are different def-
initions for multivariate exceedance and these different definitions lead to different environmental
extremes.

Since standards usually present a common design practice and many companies are required to
design their products to comply with standards, their methods of deriving requirement values for
environmental variables are described in the following. Offshore design standards such as the In-
ternational Electrotechnical Commission’s (IEC) standards on offshore wind turbines [129, 130]
organize the design process using so-called “design load cases” (DLCs). A DLC describes an operat-
ing condition of a wind turbine, together with the environmental conditions during the operating
conditions. In IEC’s standard 61400-3-1 [129] the DLCs are numbered, such that, for example,
DLCs starting with the number 1 describe the turbine during power production and DLCs starting
with the number 6 represent the turbine in parked mode (Table 2.1). The DLCs regulate which type
of extreme values shall be assumed for different environmental variables. For example, in DLC 6.1
the marginal 50-year return value of significant wave height, Hs50, must be estimated. Some DLCs,
however, also require the estimation of joint extremes: DLC 1.6 demands the estimation of so-called
severe sea states, which are defined as the joint 50-year extremes of wind speed and significant wave
height.

To estimate joint wind speed - wave height extremes, designers must first estimate the joint dis-
tribution of wind speed and significant wave height with methods described in Section 2.3.1. Then
joint extremes are defined based on that distribution resulting in a curve that, based on a given def-
inition of exceedance, represents 50-year extremes. In the realm of designing offshore structures
the curve that holds joints extremes is known as an “environmental contour” and the method of
constructing the curve is known as the “environmental contour method” (Figure 2.15). The envi-
ronmental contour method deals with the challenge of how joint extremes shall be defined (Sec-
tion 2.2.2) and how to deal with the differentiation between short-term and long-term statistics,
which is commonly used in offshore engineering. Ultimately, it aims to provide a computationally
efficient approximation of the N -year structural response. It has been applied in the structural anal-
ysis of a wide range of marine structures such as wind turbines [30, 141, 155, 185, 220, 221, 236,
256], wave energy converters [37, 184, 194], an integrated wind-wave-tidal energy converter[150],
floating structures for oil and gas production [229, 261, 265], bridges [75, 270], and vessels [6].

This method’s roots can be traced back to Haver’s publication from 1985 [110] where he described
how a curve of joint extremes of Hs and Tp can be constructed to derive requirement values. He
called this curve “design curve” (Table 2.2). His proposed environmental contour is constructed by
first selecting an appropriate interval for spectral peak period and then calculating the correspond-
ing Hs value by enforcing two conditions: The conditional probability distribution Hs|Tp has con-
stant exceedance probability for eachTp value within the predefined interval and the total exceedance
probability must equal a given value. In 1993, Winterstein et al. [263] proposed constructing envi-
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Design situation DLC Wind condition Waves Wind and wave
directionality

Sea currents Water level Type of
analysis

Partial
safety
factor

1) Power production 1.1 NTM
Vin < Vhub < Vout

rotor-nacelle assembly

NSS
Hs = E[Hs|Vhub]

COD, UNI NCM MSL U N
(1.25)

1.2 NTM
Vin < Vhub < Vout

NSS Joint probability
distribution of Hs, Tp, Vhub

MIS, MUL No currents NWLR or
≥ MSL

F ∗

1.3 ETM
Vin < Vhub < Vout

NSS
Hs = E[Hs|Vhub]

COD, UNI NCM MSL U N

1.4 ECD
Vhub = Vr − 2m/s, Vr,
Vr + 2m/s

NSS
Hs = E[Hs|Vhub]

MIS, wind
direction change

NCM MSL U N

1.5 EWS
Vin < Vhub < Vout

NSS
Hs = E[Hs|Vhub]

COD, UNI NCM MSL U N

1.6 NTM
Vin < Vhub < Vout

SSS
Hs = Hs,SSS

COD, UNI NCM NWLR U N

•

•

•

6) Parked (standing
still or idling)

6.1 EWM Turbulent wind model
Vhub = Vref

ESS
Hs = Hs50

MIS, MUL ECM
U = U50

EWLR U N

•

•

•

8) Transport,
assembly,
maintenance, and
repair

8.2 EWM
Vhub = V1

ESS
Hs = Hs1

COD UNI ECM
U = U1

NWLR U A

Table 2.1: Design load cases from the standard IEC 61400-3-1 [129], which regulates designs of bottom-fixed offshore wind turbines. For simplicity, the column “other
conditions” is not shown. COD = co-directional, ECD = extreme coherent gust with direction change, ESS = extreme sea state, ETM = extreme turbulence
model, EWM = extreme wind speed model, MIS = misaligned, MSL = mean sea level, MUL = multi-directional, NCM = normal current model, NSS = normal
sea state, NTM = normal turbulence model, NWLR = normal water level range, SSS = severe sea state, UNI = uni-directional, F = fatigue, U = ultimate strength,
N = normal, * = partial safety factor for fatigue, numbers written as subscripts of V , Hs and U denote the return period in years.31
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Figure 2.15: Illustration of an environmental contour and the associated terminology. As an example, a direct
sampling contour, which is defined with angular exceedance regions in the original variable space,
is shown.

ronmental contours in a general way that is not specific to Hs and Tp. They proposed binding the
design region by multiple exceedance regions that are bound by a line that has an angle θ relative to
the abscissa (in 2D). The design region, however, is not constructed in the physical variable space,
but only after transforming the variables into standard normal space, which allows for easier mathe-
matical expressions. In 2D, the exceedance boundary describes a circle in standard normal space. In
higher dimensions, the design region becomes a sphere (d = 3) or a hypersphere (d > 3) in standard
normal space, bound by (hyper)planes. Winterstein et al. [263] carefully embedded their environ-
mental contour method in reliability theory and called it the “inverse first-order reliability method”
(IFORM; Figure 2.16). In the IFORM, the exceedance regions relate to the possible failure region of
the structure that is being designed. Many marine structures will have a failure boundary that can be
approximated as a straight line (in two dimensions) or as a (hyper)plane if d > 2. Thus, if a structure
is designed based on an IFORM contour with exceedance probability α, it will often have a failure
probability of approximately pF ≈ α. The work by Winterstein et al. [263] also introduced a way
to deal with the effect that, due to the response’s short-term variability, the highest response could
also occur at a high quantile of a low environmental condition. They suggested that contours can
be “inflated” by using a higher return period than intended when constructing the contour. Alter-
natively, short-term response variability can be compensated by using the original return period, but
evaluating the response at a higher quantile [8, 184] or by multiplying an additional safety factor to
the environmental load [197].

Yet another way to construct an environmental contour was proposed in the standard NORSOK
N-003 in 20073 [197]: In the so-called constant probability density approach, first the marginal N -
year return value, Hs[N ], is estimated. Then the mean conditional Tp value for Hs[N ] is estimated.
Finally, the contour is constructed as the contour of constant probability density going through the
point (Hs[N ], E[Tp|Hs[N ]]). In 2013, Huseby et al. [124] proposed constructing environmental
contours using angular exceedance in the original variable space. In 2014, Jonathan et al. [134] ex-
plored using different joint exceedance regions to construct environmental contours.

In this thesis, a novel way of constructing aN -year environmental contour will be proposed. This
contour method, called highest density contour method, will be introduced in detail in Section 6.1.

3Anecdotally, this approach has been proposed and used earlier, however, the author of this thesis is not aware of an
earlier reference.
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Failure boundary
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 U2 X1

X2

IFORM environ-
mental contour

IFORM environ-
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α

Figure 2.16: Concept of an IFORM environmental contour. Contours are derived by first constructing a
circle in standard normal space, where all variables are normally distributed with a mean of 0 and
a standard deviation of 1, and then transforming this circle to the original variable space. One of
the exceedance regions, that holds probability α, approximates the failure region. If the failure
region is convex the probability of failure pF will be smaller than the exceedance probability α.

In this section, the related contour methods will also be described in detail. The highest density
method was published in 2017 [100]. It influenced a method based on similar ideas, the inverse
second-order reliability method (ISORM; [27]). In addition, after 2017, Derbanne and Haute-
clocque [44] proposed a “direct IFORM” contour method, which has similarities with the direct
sampling contour method and Dimitrov [46] proposed a contour method that he called “inverse
directional simulation.” While working on this thesis, reviews and comparison studies on the envi-
ronmental contour method were published: Ross et al. [216] provided a broad review on the envi-
ronmental contour method, Eckert et al. [51] proposed a comparison framework for contours and
the author of this thesis co-organized a benchmarking study on contour methods [92, 93].

After the values of all environmental variables that are required as part of a design load case have
been determined – using univariate methods or using the environmental contour method – sim-
ulations can be set up to analyze which loads these environmental conditions cause and how the
structure of interest responds to these loads. The next section describes this process.

Method Year First publication

Design curve method 1985 Haver [110]
Inverse first-order reliability method (IFORM) 1993 Winterstein et al. [263]
NORSOK’s constant probability density approach 2007* NORSOK [197]
Direct sampling contour method 2013 Huseby et al. [124]
Joint exceedance contour method 2014 Jonathan et al. [134]
Highest density contour method 2017 Haselsteiner et al. [100]
Inverse second-order reliability method (ISORM) 2018 Chai and Leira [27]
Direct IFORM 2019 Derbanne and Hauteclocque [44]
Inverse directional simulation 2020 Dimitrov [46]

Table 2.2: Environmental contour methods. The highest density contour method was proposed by the author
of this thesis and will be introduced in detail in Chapter 5. * Anecdotally, this approach has been
proposed and used earlier, however, the author of this thesis is not aware of an earlier reference.
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2.3.3 Evaluating offshore structures with design loads

The combinations of environmental conditions that are defined via a particular load case are typically
used to initialize the boundary conditions of a multi-physics time-domain simulation. For example,
let x = (v, hs, tp, θwind, θwave, u, w)

T describe the environmental conditions that correspond to
one of the DLCs in IEC 61400-3-1 [129] (Table 2.1; with v representing wind speed, hs significant
wave height, tp spectral peak period, θwind the wind’s main direction, θwave the wave’s main direc-
tion, u the sea current and w the water level). Then, the designer of an offshore wind turbine is
interested in the amount of load l that the combination of environmental conditions x cause and
eventually which response r the load causes. To determine the response, usually codes that couple
aerodynamic, hydrodynamic, control, and structural models are used – so-called aero-hydro-servo-
elastic codes. Popular codes that are used to simulate offshore wind turbines are Bladed (DNV AS,
Norway), HAWC2 (DTU Wind Energy, Denmark), and OpenFast (NREL, USA). These – and
other codes – have been used in offshore code comparison projects OC3 [138], OC4 [139] and OC5
[213]. An overview about aeroelastic wind turbine codes is given by Ahlström [2] and by Zhang and
Huang [274]. While Bladed, HAWC2, and OpenFast are specific to wind turbines, general-purpose
codes can be used to simulate the dynamics of vessels and other offshore structures. Popular gen-
eral purpose codes are among others the panel codes Ansys Aqwa (Ansys Inc, USA) and WAMIT
(WAMIT Inc, USA). A comparison among these codes is presented by Gourlay et al. [77].

If a DLC, as for example DLC 1.6, requires the estimation of joint extremes, the set of environ-
mental conditions that must be evaluated in simulations depends upon the environmental contour
method used. For example, loads that result from environmental conditions derived from a direct
sampling contour method might be higher than the loads derived from an IFORM contour. Cur-
rent guidelines and standards allow the use of different contour methods. Consequently, even if we
had a joint distribution that perfectly describes the long-term statistics of the offshore environment,
the requirements that constitute DLCs are insufficient in determining unique design loads and – if
one designs the structure to survive the design loads – a definitive reliability.

The true reliability of a structure can only be determined using a so-called “full long-term analy-
sis,” which – when only sea states are evaluated – is also known as “all sea states approach.” In a full
long-term analysis, a structure’s response over the complete variable space is evaluated to determine
its reliability. Assuming that environmental states are independent and identically distributed, the
long-term response function of the response variable R can be written as (see, for example, [33])

FR(r) =

∫︂
x
FS,R|X(r|x)fx(x)dx, (2.33)

where FS,R|X is the short-term response function (the distribution function of the response at a
given environmental condition) and fx is the long-term joint density function of the environmental
conditions.

Then, based on the structure’s response capacity rcap its true reliability is

pR = Pr(R < rcap) = FR(rcap). (2.34)

The problem is that in practice the short-term response function,FS,R|X, is not known and estimat-
ing it at every possible realization ofX is infeasible as performing aero-hydro-servo-elastic simulations
is computationally expensive. Consequently, the whole process of evaluating several DLCs could be
interpreted as a method to reduce computational costs by evaluating only a reduced number of real-
izations x. Indeed, IEC’s standard on offshore wind turbines states that the extreme environmental
conditions that are defined using the standard’s procedures are “intended to produce N -year (N=1
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or 50) return period load effects” [129, p. 24] where their use of “load effect” is like this thesis’s use
of “response.” Thus, the standard’s procedures are intended to estimate the 50-year response r50
without deriving the long-term response function (Expression 2.33).

2.3.4 Problems in the design process that are addressed

This thesis addresses the first two steps of the overall design process of offshore structures: how site-
specific external conditions are determined and how they are used in the formulation of a design
basis (Figure 2.17). These two main steps are comprised of many individual detailed process steps.
Specifically, this thesis addresses three of these detailed steps:

1. Modeling the long-term probability distribution of Hs with a parametric distribution;

2. Modeling the long-term wind and wave joint distribution FV,Hs,Tp ; and

3. Determining joint wind speed - wave height extremes that have a joint return period of 50
years with an environmental contour method.

The current practice for these steps has problems that this thesis tries to solve.
Currently, it is common to model the long-term distribution of Hs assuming that significant

wave height data follows a translated Weibull distribution (see, for example, the recommendations
by DNV [47, p. 76] or a recent study on wind turbine design by Velarde et al. [256]). However,
if a translated Weibull distribution is fitted to Hs data, extreme values are often underestimated
(Figure 2.18 top). Researchers have proposed more complex distributions (in terms of number of
variables, [63, 110, 198]) or to use an event model instead of a global model to solve the problem
(see, for example, [25, 61]). However, because these solutions have other drawbacks, currently many
researchers still use the translated Weibull distribution to model significant wave height (see, for ex-
ample, [16, 17, 35, 202, 248, 256]). In this thesis, it will be explored, whether the exponentiated
Weibull distribution can describe empirical Hs data better than the translated Weibull distribution.

To model the joint wind speed - wave height distribution, engineers and researchers often follow
the recommendations given in DNV’s “recommended practice” on environmental conditions and
environmental loads [47]. There, DNV recommends a model for the wind speed - wave height joint
distribution FV,Hs and a model for FHs,Tp . Unfortunately, when the recommended structure for
FV,Hs is fitted to wind and wave data, the model does not represent the empirical dependence struc-
ture well at many offshore sites (Figure 2.18 middle): Usually, in the region of high wave heights for
a given wind speed, the model has lines of constant density with positive curvature, while the empir-
ical distribution has lines of constant density with negative curvature. In this thesis, a novel model
structure for FV,Hs and for FHs,Tp will be introduced and analyzed.

Finally, it is common practice to use the inverse first-order reliability method (IFORM) to deter-
mine joint extremes of wind speed and significant wave height that have a joint return period of 50
years. IFORM contours incorporate an assumption about the topology of the structural response:
It is assumed that the failure region has a convex shape. However, this is not always the case, and
this thesis will show that especially, for offshore wind turbines, this is usually not the case in the
V − Hs space (Figure 2.18 bottom). Thus, if wind-wave joint extremes are determined using an
IFORM environmental contour, resulting loads and consequently the resulting responses might be
underestimated. Then, it could happen that the estimated 50-year response is lower than the true 50-
year response. In this thesis, an alternative environmental contour method will be proposed, which
does not require a convex failure region and therefore will also be conservative if the failure region is
non-convex.
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Figure 2.17: Detailed steps in the design process of an offshore structure that are addressed in this thesis.

Based on these novel models and methods, a methodology for designing offshore structures will
be proposed. Compared to the state of the art, this design methodology shall increase the likelihood
that a structure that was designed according to it meets its target reliability. The next chapters will
comprise descriptive studies on modeling the offshore environment (Chapters 3 and 4) and on se-
lecting joint extremes (Chapter 5) so later chapters can use these models and methods to introduce
a novel design support for engineers who work on offshore structures (Chapter 6).
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Figure 2.18: Problems in the design process that are addressed in this thesis: (1) When the probability distribu-
tion of significant wave height Hs is modeled using the translated Weibull distribution, extreme
values are usually underestimated; (2) when the joint wind speed - wave height model that is ad-
vocated in DNV’s “recommended practice” [47] is used, the fitted joint distribution usually does
not capture the empirical dependence structure well, resulting in wrong joint extremes being se-
lected; and (3) when wind speed - wave height joint extremes are determined using the inverse
first-order reliability method (IFORM), the long-term extreme response can be underestimated.
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3 Long-term distribution of the
significant wave height

Previously published This chapter is based on a publication by Haselsteiner and Thoben
[103]. The chapter will introduce a new parametric model for the distribution of the significant
wave height. This model represents one of three suggested improvements of the overall design pro-
cess of offshore structures.

Publication’s full citation A. F. Haselsteiner and K.-D. Thoben. “Predicting wave heights
for marine design by prioritizing extreme events in a global model”. Renewable Energy 156, 2020,
pp. 1146–1157. doi: 10.1016/j.renene.2020.04.112

3.1 Introduction

To estimate the loads on a marine structure like an offshore wind turbine, the long-term distribu-
tion of environmental variables that describe wave characteristics needs to be modeled. Especially
important is significant wave height, which describes the intensity of a sea state. The long-term dis-
tribution of significant wave height is typically estimated by fitting a parametric probability distri-
bution to measured or simulated wave data. Then, based on this probability distribution different
quantiles are derived and used as design conditions for structural integrity calculations for the marine
structure of interest. For example, standards for offshore wind turbines [129, 130], require designers
to estimate the 1-year and 50-year return value of significant wave height – extreme values that are
exceeded, on average, every 1 and 50 years, respectively. To calculate these values, designers might
use a global model or an event model. As described in Section 2.3.1, global models are derived using
all available data from a long series of subsequent observations while event models are derived from
selected extremes of the original dataset [47, p. 75].

These two approaches have different strengths and weaknesses. Global models utilize the complete
original dataset and consequently make use of all available information. Further, no preprocessing
is required, and common parametric distributions can be used. However, time series of significant
wave height show strong autocorrelation such that individual data points are not independent and
identically distributed. Additionally, common fitting approaches like maximum likelihood estima-
tion (MLE) and least squares estimation weight every data point equally and thus do not consider
that in structural design high values of significant wave height are especially important.

Event models are typically fitted using the peak over threshold method or the block maximum
method such as the annual maxima method. In both cases, the original time series are preprocessed
and individual peaks are identified. These peaks are more independent than the data points of the
raw time series. However, much less information is used when fitting a distribution to these peaks.
Furthermore, event models only describe the upper – or as a synonym right – tail of the global dis-
tribution of significant wave height. In design, also quantiles within the bulk of the distribution
sometimes need to be estimated such that a second model that covers lower quantiles is required.
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3 Long-term distribution of the significant wave height

Distribution Nr. of parameters References that used it for Hs Proposed in

Lognormal 2 [132, 199] 1956 [132]
2-parameter Weibull 2 [13, 75, 199, 249] 1972 [13]
Translated Weibull 3 [17, 195, 202, 248, 249, 252, 256] 1973 [195]
Generalized gamma 3 [198] 1992 [198]
3-parameter beta 3 [63] 1999 [63]
Ochi distribution 4 [199] 1980 [199]
Lonowe distribution 4-5 [110, 151] 1985 [110]

Table 3.1: Distributions that have been used to model the long-term distribution of significant wave height.
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Figure 3.1: Typical model fit of the translated Weibull distribution. The distribution fits the data relatively
well at its body (a), but poorly at its tail (b).

Often, this second model is a global model so as, in one design project, two diverging models for
high quantiles might exist.

Here, we focus on global models. In the past, significant wave height has been modeled using vari-
ous parametric distributions with two to five parameters: The lognormal distribution [132, 199], the
2-parameter Weibull distribution [13, 199], the translated Weibull distribution (sometimes simply
called “3-parameter Weibull distribution”) [195, 252], the generalized gamma distribution [198],
a 3-parameter beta distribution of the second kind (and two similar distributions, which showed
worse model fit) [63], Ochi’s four-parameter distribution [199] and the “Lonowe distribution” [110,
151, 267] (Table 3.1). Now, probably the most used distribution to model significant wave height is
the Weibull distribution. While some researchers use the 2-parameter Weibull distribution (for ex-
ample [75, 249]), most researchers use the translated Weibull distribution (for example [16, 17, 83,
202, 248, 249, 252, 256]). Certifying organizations also recommend assuming that significant wave
height follows a translated Weibull distribution unless data indicate otherwise [47, p. 76].

However, the translated Weibull distribution often does not fit well at its upper tail and under-
estimates high quantiles (Figure 3.1). Moreover, some authors have criticized that the distribution’s
location parameter, which represents a minimum non-zero value, lacks physical meaning since sea
states of significant wave height zero exist and represent the calm sea [199].

In this study, it will be shown that a similar distribution, the exponentiated Weibull distribution,
provides better model fit to significant wave height data than the translated Weibull distribution. The
exponentiated Weibull distribution has three parameters as well and consequently does not increase
model complexity. Instead of a location parameter, the distribution has a second shape parameter,
which offers the flexibility that is required to ensure good model fit at both, the distribution’s bulk
and the tail.

40



3.2 The exponentiated Weibull distribution

3.2 The exponentiated Weibull distribution

The exponentiated Weibull distribution is a generalization of the common 2-parameter Weibull dis-
tribution. It has been proposed by Mudholkar and Srivastava [182] to model nonmonotone failure
rates and has subsequently been used in a variety of contexts (for a review, see Nadarajah et al. [186]).
It extends the 2-parameter Weibull distribution with a second shape parameter, δ, that comes as an
exponent of the cumulative distribution function (CDF):

F (x) =
[︂
1− e−(x/α)β

]︂δ
(3.1)

forx > 0,α > 0,β > 0 and δ > 0. In the case of δ = 1 the exponentiated Weibull distribution be-
comes the 2-parameter Weibull distribution. For comparison, the translated Weibull distribution’s
CDF, which has a location parameter, γ, instead of a second shape parameter reads

F (x) = 1− e−[(x−γ)/α]β . (3.2)

Because adding an exponent to a distribution does not change a distribution’s max-domain of at-
traction [211], the exponentiated Weibull distribution has the same max-domain of attraction as the
2-parameter Weibull distribution: the Gumbel distribution.

3.3 Research methodology

To assess whether the exponentiated Weibull distribution represents a better model for significant
wave height, we analyzed hourly time series of wave data of six locations. We considered three models:
(1) the translated Weibull distribution with its parameters estimated using maximum likelihood es-
timation; (2) the exponentiated Weibull distribution, fitted using maximum likelihood estimation;
and (3) the exponentiated Weibull distribution, fitted using weighted least squares (WLS) estima-
tion. To assess the goodness of fit of the three models, we computed the mean absolute error (MAE)
between the models’ predictions and the observations. Additionally, we computed 1-year and 50-
year return values and visually inspected quantile-quantile (QQ) plots. In the following, we describe
the datasets, the parameter estimation, and the goodness of fit assessment in detail.

3.3.1 Datasets

We used six datasets of significant wave height (Table 3.2). Three datasets (A, B, C) were derived
from moored buoys off the US East Coast and three datasets were gathered from a hindcast that
covers the North Sea (D, E, F ; Figure 3.2). The three buoy datasets were recorded by the National
Data Buoy Center (NDBC; [192]) and were downloaded from www.ndbc.noaa.gov. They cover the
time between January 1, 1996 and December 31, 2005. However, the buoys did not measure the
complete duration such that these datasets hold between 81,749 (dataset C) and 83,917 (dataset A)
hourly measurements. Datasets D, E and F were simulated in the hindcast “coastDat-2” [80, 81]
and cover the complete time between January 1st, 1965 and December 31st, 1989. Additionally, for
each location, we retained some data (datasets Ar, Br, Cr, Dr, Er, Fr) to assess how well fitted dis-
tributions can predict a future time period. The NDBC datasets were preprocessed: we filtered out
time periods when no measurements have been conducted, calculated significant wave height from
the spectral energy, and created consistent hourly time series by combining 30-minute sea states to
hourly sea states when sea states with a duration of 30 minutes instead of 60 minutes were recorded.
No preprocessing has been performed on the coastDat-2 datasets. This study’s datasets were also
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3 Long-term distribution of the significant wave height

A

C
B

DE
F

Figure 3.2: Locations of the used datasets.

used in a benchmarking exercise on estimating extreme environmental conditions for engineering
design [92, 93]. In addition, they were used in this thesis’ study on bivariate models that will be
presented in Chapter 4.

Dataset Duration n Site Data source

A Jan. 1996 to Dec. 2005 82,805 43.525 N 70.141 W (off Maine coast) buoy 44007
Ar Jan. 2006 to Oct. 2017 92,515
B Jan. 1996 to Dec. 2005 83,917 28.508 N 80.185 W (off Florida coast) buoy 41009
Br Jan. 2006 to Jul. 2017 91,403
C Feb. 1996 to Dec. 2005 81,749 25.897 N 89.668 W (Gulf of Mexico) buoy 42001
Cr Jan. 2006 to Jun. 2018 93,571
D Jan. 1965 to Dec. 1989 219,144 54.000 N 6.575 E (off German coast) hindcast
Dr Jan. 1990 to Dec. 2014 219,144
E Jan. 1965 to Dec. 1989 219,144 55.000 N 1.175 E (off UK coast) hindcast
Er Jan. 1990 to Dec. 2014 219,144
F Jan. 1965 to Dec. 1989 219,144 59.500 N 4.325 E (off Norwegian coast) hindcast
Fr Jan. 1990 to Dec. 2014 219,144

Table 3.2: Used datasets of significant wave height. The buoy data were downloaded from the website of the
National Buoy Data Center, www.ndbc.noaa.gov, and the hindcast samples were derived from the
coastDat-2 hindcast [81]. n = Number of observations.

3.3.2 Parameter estimation methods

We estimated the parameters of the translated Weibull distribution using maximum likelihood esti-
mation (MLE). MLE is a standard parameter estimation technique [57] and is commonly used in
the context of estimating the distribution of significant wave height (see, for example, [252]). We
used Matlab’s (Mathworks, USA, version 2019a) function MLE.m to perform the MLE computation.
For the second model, an exponentiated Weibull distribution fitted using MLE, we used Matlab’s
function MLE.m as well. The third model, the exponentiated Weibull distribution whose parame-
ters are fitted using weighted least squares estimation, represents a less typical parameter estimation
technique and is therefore explained in detail.

The goal of this approach is to minimize the sum of the weighted squared deviations between
observed quantiles and predicted quantiles. Let the set {xi}ni=1 represent the ordered values of a
significant wave height sample with x1 representing the lowest measured value and xn representing
the highest measured value, where n represents the length of the sample. Each ordered value, or
sample quantile, xi, has an associated probability pi = (i − 0.5)/n where i is the index of the
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3.3 Research methodology

ordered value, i ∈ [1, n]. Further, let x̂i denote the predicted quantile based on an exponentiated
Weibull distribution with the parameters α, β, δ. Then, the set of parameters that minimizes the
sum of the weighted squared deviations between the sample quantiles and the predicted quantiles
can be expressed as

{α̂, β̂, δ̂} = argmin
α,β,δ

n∑︂
i=1

wi(xi − xî)
2, (3.3)

where xî = F−1(α, β, δ; pi) (3.4)

and F−1 denotes the inverse cumulative distribution function (ICDF), also known as the quantile
function (see Section 2.1.2). While in principle many functions for the weights,wi, are possible, here
we chose to weight the error based on the squared wave height,

wi =
x2i∑︁n
i=1 x

2
i

. (3.5)

Thus, errors between observation and prediction at high wave heights contribute much stronger
to the overall error than errors at low wave heights ensuring that extreme events are prioritized in
the parameter estimation procedure. Alternative choices that prioritize high wave heights could
be, for example, linearly increasing weights, wi = xi/

∑︁
xi, or cubically increasing weights,

wi = x3i /
∑︁

x3i . We briefly tested these alternatives and, based on visual inspection of the esti-
mated distributions, decided to weight errors quadratically. The outlined estimation method was
implemented in Matlab.1 In the appendix, in Section A.2, we describe the mathematics and algo-
rithms used to solve Expression 3.3.

To assess the uncertainty of the estimated parameters, we used bootstrapping with replacement
(see, for example, [54]). We estimated standard errors based on 100 bootstrap samples.

3.3.3 Goodness of fit assessment

We assessed each model’s goodness of fit by computing the mean absolute error and by comparing
each model’s predicted 1-year return value with the empirical 1-year return value. Both assessments
were first performed with the original datasets (A,B,C, ...) and then with the retained datasets
(Ar, Br, Cr, ...).

Mean absolute error, ē, was first computed for the whole dataset:

ē =

∑︁n
i=1 |xi − x̂i|

n
, (3.6)

Then, to assess the goodness of fit at high quantiles, we computed mean absolute error for quantiles
with pi > 0.99 (“the tail”) and for quantiles with pi > 0.999 (“the very tail”). The two errors, ē0.99
and ē0.999 read

ē[pi] =

∑︁n
i=j |xi − x̂i|
n− j + 1

(3.7)

where j is the index of the first empirical quantile whose pivalue is above the threshold of 0.99 or
0.999.

1The code is available at https://github.com/ahaselsteiner/exponentiated-weibull.
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3 Long-term distribution of the significant wave height

For the assessment of the predicted 1-year return value, we computed the normalized return value,
H∗

s1, by dividing the predicted return value, Ĥs1, by the empirical return value, Hs1:

H∗
s1 =

Ĥs1

Hs1
(3.8)

where Hs1 is the smallest empirical quantile whose probability, pi, is greater than (1 − α), with α
being the probability of exceedance, α = 1/(365.25 × 24) for hourly sea states. For consistency,
Ĥs1 is computed using this empirical pi value too, instead of the exact value, which is 1− α. Then
H∗

s1 = 1 represents perfect agreement, H∗
s1 < 1 a too low prediction and H∗

s1 > 1 a too high
prediction.

3.4 Results

3.4.1 Estimated parameters and visual assessment

The fitted translated Weibull distributions (Table 3.3) provide decent model fit within the bulk of
the data, but fit poorly at the tail. This is apparent both, in density plots (Figure 3.3 and 3.4) and
in QQ-plots (Figure 3.5). In all datasets, the translated Weibull distribution predicts too low proba-
bility densities in the tail (pi > 0.99; Figure 3.4) and consequently also too low quantiles in the tail
(Figure 3.5a).

Density plots suggest that the fitted exponentiated Weibull distributions (Table 3.4) provide good
model fit at both, the body and the tail (Figure 3.3 and 3.4). At the tails, the densities of the MLE-
fitted exponentiated Weibull distributions provide better model fit than the translated Weibull distri-
butions. However, for datasetD andF the MLE-fitted exponentiated Weibull distribution predicts
too high densities. The densities of the WLS-fitted distributions seem to better fit these datasets.
Overall, at the tail, the WLS-fitted exponentiated distributions match the empirical density values
the closest.

The QQ-plots show results similar to density plots: The MLE-fitted exponentiated Weibull distri-
butions match the data better than the translated Weibull distributions at high quantiles (Figure 3.5).
However, at four datasets they predict too high values (datasets A,D,E, F ). The WLS-fitted dis-
tributions provide good model fit over the complete range of the datasets. Only at the highest few
observations deviations between the ordered values and the theoretical quantiles are apparent.

In summary, the density plots and the QQ-plots suggest that the exponentiated Weibull distri-
bution is a better global model for significant wave height than the translated Weibull distribution.
However, the QQ-plots show that in some datasets the MLE-fitted exponentiated Weibull distribu-
tions predict too high wave heights at high quantiles. There, the WLS-fitted distributions represent
an improvement over the MLE-fitted distributions.

3.4.2 Quantitative assessment

The two models of the exponentiated Weibull distribution provide the best fit in terms of mean abso-
lute error (Figure 3.6). When the whole range of the datasets is considered, the MLE-fitted distribu-
tions have the lowest mean absolute error in five of six datasets. In the tail (pi > 0.99) the WLS-fitted
exponentiated Weibull distributions have the lowest mean absolute errors in five of six datasets. In
the very tail (pi > 0.999) the WLS-fitted exponentiated Weibull distributions have the lowest er-
rors in all datasets. There, the averaged mean absolute errors of the three models are 0.24±0.14 m,
1.08±0.67 m and 1.80±0.50 m (WLS-fitted exponentiated Weibull distribution, MLE-fitted expo-
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Figure 3.3: Model fit between dataset A and the three considered models. Left: Complete range of the dis-
tribution. Right: Tail of the distribution (pi > 0.99). The three models fit decently at the dis-
tribution’s body, but at the tail the translated Weibull distribution underestimates the observed
probability density. This behavior is present in all six datasets.

Dataset α (scale) β (shape) γ (location)

A 0.9445±0.0055 1.4818±0.0097 0.0981±0.0039
B 1.1413±0.0118 1.5990±0.0140 0.1878±0.0030
C 1.1645±0.0124 1.5562±0.0166 0.0566±0.0097
D 1.5797±0.0032 1.4067±0.0029 0.1024±0.0014
E 1.8608±0.0027 1.4925±0.0028 0.1222±0.0007
F 2.5693±0.0059 1.5466±0.0046 0.2248±0.0008

Table 3.3: Estimated parameters of the translated Weibull distributions. Values after the ±-sign represent the
bootstrap estimate of the standard error.

Dataset Method α (scale) β (shape) δ (shape) E[ ] Variance

A MLE 0.0373±0.0041 0.4743±0.0094 46.6078±3.8433 0.9428 0.4089
WLS 0.2069±0.0149 0.6844±0.0142 7.7863±0.6239 0.9387 0.4287
Observed 0.9444 0.4121

B MLE 0.1731±0.0077 0.6563±0.0085 17.3927±0.7582 1.2063 0.4924
WLS 0.0988±0.0259 0.5835±0.0316 36.5747±9.7319 1.2139 0.4550
Observed 1.2054 0.4696

C MLE 0.3026±0.0085 0.7445±0.0077 6.4434±0.1762 1.0984 0.5455
WLS 0.2269±0.0735 0.6973±0.0636 9.8461±4.2791 1.1086 0.4970
Observed 1.0975 0.5163

D MLE 0.4728±0.0072 0.7452±0.0042 5.1186±0.0743 1.5354 1.2373
WLS 0.9801±0.0278 1.0077±0.0147 2.1787±0.0805 1.5291 1.1938
Observed 1.5345 1.1751

E MLE 0.7889±0.0098 0.8842±0.0052 3.7615±0.0513 1.7972 1.4387
WLS 1.2387±0.0249 1.0991±0.0120 2.0867±0.0601 1.7918 1.4211
Observed 1.7968 1.4011

F MLE 0.7180±0.0117 0.7663±0.0046 6.5994±0.1112 2.5263 2.6630
WLS 1.6237±0.0387 1.0941±0.0141 2.4034±0.0824 2.5197 2.5336
Observed 2.5248 2.5014

Table 3.4: Estimated parameters of the exponentiated Weibull distributions. Parameters were estimated either
using maximum likelihood estimation (MLE) or weighted least squares (WLS). Values after the
±-sign represent the bootstrap estimate of the standard error. While there are strong differences
between MLE and WLS parameters, expected values E[ ] and variances are similar.
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Figure 3.4: Tail plots of all datasets (pi > 0.99). The translated Weibull distributions predict too low prob-
ability densities in all datasets. In datasets D, E, and F , the MLE-fitted exponentiated Weibull
distributions predict too high probability densities.

0 5
0

2

4

6

0 5
0

5

10

0 5
0

5

10

0 5 10
0

5

10

0 5 10
0

5

10

0 5 10
0

5

10

15

0 5 10
0

5

10

15

0 5 10
0

5

10

0 5 10
0

5

10

0 10 20
0

10

20

0 10
0

5

10

15

0 10 20
0

10

20

30

0 5 10
0

5

10

0 5 10
0

5

10

0 5 10
0

5

10

0 5 10
0

5

10

15

0 5 10
0

5

10

15

0 10 20
0

10

20

O
rd

er
ed

 v
al

ue
s,

 h
s (

m
)

O
rd

er
ed

 v
al

ue
s,

 h
s (

m
)

Theoretical quantiles

O
rd

er
ed

 v
al

ue
s,

 h
s (

m
)

Theoretical quantiles Theoretical quantiles Theoretical quantiles Theoretical quantiles Theoretical quantiles

(a)

(b)

(c)

Dataset A Dataset B Dataset C Dataset D Dataset E Dataset F

A B C D E F

A B C D E F

Transl. Weibull
�tted with MLE

Exp. Weibull
�tted with MLE

Exp. Weibull
�tted with WLS

Figure 3.5: QQ-plots of all datasets. (a) Translated Weibull distributions. (b) Exponentiated Weibull distribu-
tions fitted with maximum likelihood estimation (MLE). (c) Exponentiated Weibull distributions
fitted with weighted least squares (WLS) estimation.
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Figure 3.6: Mean absolute error of the predicted significant wave height for different parts of the distribution.
Mean absolute error is a measure for the goodness of fit. It is calculated from the deviations between
sample quantiles and predicted quantiles (see Equations 3.6 and 3.7). Circles = translated Weibull
distributions, diamonds = MLE-fitted exponentiated Weibull distributions, squares = WLS-fitted
exponentiated Weibull distributions.

nentiated Weibull distribution and translated Weibull distribution, respectively; ē0.999 values are
averaged over the six datasets, N = 6; values after the ±-sign represent standard deviations).

The empirical return values are best predicted by the WLS-fitted exponentiated Weibull distribu-
tion (Figure 3.7). Its averaged normalized 1-year return value is 0.985, its standard deviation 0.054
(N = 6). The translated Weibull distribution predicts too low 1-year return values in all datasets
(H∗

s1 = 0.714±0.122, N = 6) and the MLE-fitted exponentiated Weibull distribution predicts too
high return values in four datasets (H∗

s1 = 1.112±0.151, N = 6).
The three types of models lead to big differences when 50-year return values are predicted (Fig-

ure 3.8). For example, for dataset A the translated Weibull distribution predicts Hs50 = 5.43m,
the MLE-fitted exponentiated Weibull distribution predicts Hs50 = 14.35m and the WLS-fitted
distribution predicts Hs50 = 10.86m. For comparison, in dataset A, which covers a duration of
only 10 years, the highest measured Hs value is 7.10 m.

As a possibly more direct assessment of how well the fitted distributions predict future wave
heights, we used some retained parts of the used data sources. The results obtained with these re-
tained datasets are similar to the results with the original datasets: QQ-plots show that the WLS-
fitted exponentiated Weibull distributions provide a good model fit at low, medium and high quan-
tiles (Figure 3.9). Also, the translated Weibull distributions predict too low wave heights at high
quantiles and the MLE-fitted exponentiated Weibull distributions sometimes predict too high wave
heights at very high quantiles.

Among all models and datasets, the overall mean absolute error is between 0.01 and 0.14 m and no
model is best or worst among all datasets (Figure 3.10). In the very tails (pi > 0.999), the WLS-fitted
exponentiated Weibull distributions have the lowest averaged mean absolute error, 0.37±0.08 m
(N = 6). The averaged mean absolute error of the MLE-fitted exponentiated Weibull distributions
is 0.93±0.63 m (N = 6) and the averaged mean absolute error of the translated Weibull distributions
is 1.79±0.49 m (N = 6; both also for pi > 0.999).
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Figure 3.7: Comparison of the 1-year return values predicted by the three considered models. Normalized re-
turn values were calculated by dividing each model’s return value by the empirical return value such
that a value of 1 describes perfect agreement. The average of the normalized 1-year return values
is too low for the translated Weibull distribution and too high for the MLE-fitted exponentiated
Weibull distribution. The 1-year return values of the WLS-fitted exponentiated Weibull distribu-
tion agrees best with the empirical return values.
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Figure 3.8: Predictions of the 50-year return values. The translated Weibull distribution predicts the lowest
return value in all considered datasets.
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Figure 3.9: QQ-plots of the fitted distributions and the retained datasets. (a) Translated Weibull distributions.
(b) Exponentiated Weibull distributions fitted with maximum likelihood estimation. (c) Exponen-
tiated Weibull distributions fitted with weighted least squares estimation.
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Figure 3.11: Comparison of the predicted 1-year return values and the return values of the retained datasets.
Normalized return values are calculated by dividing each model’s return value by the empirical
return value such that a value of 1 describes perfect agreement.

When the predicted 1-year return values are compared with the empirical 1-year return val-
ues of the retained datasets, the results are similar as in the comparison with the values of the
original datasets (Figure 3.11): The translated Weibull distributions predict too low wave heights
(H∗

s1 = 0.724±0.137, N = 6), the MLE-fitted exponentiated Weibull distributions predict mostly
too high wave heights (H∗

s1 = 1.120±0.112, N = 6) and the WLS-fitted distributions match the em-
pirical return values best (H∗

s1 = 0.996±0.054, N = 6).
In summary, the quantitative assessment showed that the three models have overall mean errors

in the same order of magnitude. Among all datasets, all models and both in-sample predictions
(datasets A,B, ...) and out-of-sample predictions (datasets Ar, Br, ...), the overall mean error was
between 0.01 and 0.14 m. Overall mean error and QQ-plots suggest that the three models perform
relatively similar for typical Hs values. In the very tail (pi > 0.999), however, a clear ranking of
model performance is apparent: The WLS-fitted exponentiated Weibull distribution has the lowest
averaged mean absolute error (0.24 m in-sample prediction, 0.37 m out-of-sample prediction) and
the translated Weibull distribution has the highest error (1.80 m in-sample, 1.79 m out-of-sample).

3.5 Discussion

3.5.1 Comparison between the tested and other models

Our analysis suggests that the exponentiated Weibull distribution is a better model for signifi-
cant wave height than the translated Weibull distribution. The exponentiated Weibull distribution
matches the empirical data better especially at the tail. However, when the distribution is fitted us-
ing maximum likelihood estimation, the estimated parameters are mainly driven by the bulk of the
data and not by the data in the very tail. Consequently, in our analysis, considerable errors remained
for high quantiles such as the 1-year return value. In the design process of offshore structures, high
quantiles of significant wave height are especially important. Thus, to improve model fit at the tail,
we estimated the distribution’s parameters by minimizing the sum of the weighted squared errors be-
tween data and model. To prioritize high values, we weighted the errors based on the squared wave
height value.

The strongest possible prioritization of observations of high wave heights would be to ignore ob-
servations up to a particular threshold. In this case one would fit a distribution solely to the tail. To
create a global model, a second distribution could be fitted to the bulk of the data. The combina-
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tion of these two distributions creates a “two-part model,” which would serve as a global model. In
such a model, the tail could be modeled with a generalized Pareto distribution and the body could be
modeled, for example, with a Weibull distribution. The generalized Pareto distribution is often used
to model the tails of other distributions and has been considered for wave heights (see, for example,
[235, 237]). We expect that a two-part model could estimate the tail even better than the model that
we proposed, however, that is expected for a model that has more parameters (2-3 parameter for the
tail and 2-3 parameter for the body). Besides, two-part models either have a discontinuity in the PDF
at the transition between the two distributions or they enforce continuity as another boundary con-
dition, which might weaken the goodness of fit to the data (for a review on extreme value threshold
estimation, see Scarrott and MacDonald [222]).

Other models that have been proposed as global models for the significant wave height are the
log-normal distribution [132], the 2-parameter Weibull distribution [13], the generalized gamma
distribution [198], the 3-parameter beta distribution of the second kind [63], the “Ochi distribu-
tion” [199] and the “Lonowe distribution” [110]. The 2-parameter Weibull distribution and the
log-normal distribution have only two parameters and – to justify that we propose to use a distribu-
tion with three parameters – should fit the data much worse. These 2-parameter distributions are
considered to be insufficient by other authors (see, for example, [151, 199]) and the brief inspection
we performed suggested the same thing for this study’s datasets.

To understand why the exponentiated Weibull distribution provides a much better model fit than
the common 2-parameter Weibull distribution, plotting the data on “Weibull paper” is illuminating
(Figure 3.12). On Weibull paper, the wave data does not follow a straight line, but a continuously
bending curve. The exponentiated Weibull distribution’s second shape parameter, δ, enables the
distribution to follow this bend: δ > 1 will lead to a curve that bends to the right and δ < 1 will
lead to a curve that bends to the left. The translated Weibull distribution’s location parameter also
leads to a slight bend when plotted on Weibull probability paper. However, its location parameter
does not control the shape directly and consequently, the translated Weibull distribution cannot
match the empirical wave data to a similar degree as the exponentiated Weibull distribution.

The Ochi distribution and the Lonowe distribution have more parameters than the exponentiated
Weibull distribution: The Ochi distribution has four parameters and the Lonowe distribution has
four or five (depending on whether one counts the threshold between the Weibull-part of the model
and the lognormal-part of the model as a parameter or not). Since we consider the performance of
the exponentiated Weibull distribution as sufficiently good, we did not consider these more complex
distributions in this study.

The generalized gamma distribution [198], and the 3-parameter beta distribution of the second
kind [63], however, have similar model complexity in terms of number of parameters. Thus, we
tested these distributions by fitting them to the six datasets using maximum likelihood estimation
and by computing the overall mean absolute error (details are provided in Section A.2). The gener-
alized gamma distributions and the 3-parameter beta distributions had errors of 0.0317±0.0203 m
and 0.0294±0.0177 m, respectively (N = 6). These averaged errors are higher than the averaged er-
ror of the MLE-fitted exponentiated Weibull distributions (0.0259±0.0158 m, N = 6), however, in
the same order of magnitude. In two datasets, the exponentiated Weibull distribution had the low-
est error, and in four datasets, the generalized gamma distribution had the lowest error. Thus, these
three models seem to perform roughly equally well. Future research based on more datasets could
help to learn more about the detailed differences between these three distributions.

In summary, among the variety of possible global models for significant wave height, the exponen-
tiated Weibull distribution represents a good compromise between model complexity and model ac-
curacy: It performs better than the current mostly used model – the translated Weibull distribution
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Figure 3.12: Weibull probability plot of datasets A and B. The shape parameter δ enables the exponentiated
Weibull distribution to represent a curved line that is similar to the empirical data. The parameters
of the shown distributions were fitted using maximum likelihood estimation.

– without increasing model complexity. The good performance of the exponentiated Weibull distri-
bution can be explained by its second shape parameter, δ, which allows the distribution to represent
a bending curve when plotted on Weibull paper.

3.5.2 Implications on design loads

Current international standards that regulate the design of fixed and floating offshore wind turbines
[129, 130] require designers to estimate the 1-year and 50-year return values of the significant wave
height. These return values are used in standardized design load cases (DLCs). A design load case
describes an operating condition of a wind turbine, together with the environmental conditions
during this operating condition. They are used to check whether a wind turbine design preserves
structural integrity under all future environmental and operating conditions that can reasonably be
expected. DLCs are developed and maintained by standardization organizations. The International
Electrotechnical Commission’s standard IEC 61400-3 [129] is widely used by turbine manufactur-
ers, certifying organizations and by academics who study wind turbine design (see, for example, [178,
212]). Estimating the 1-year wave height return value, Hs1, is required for the design load cases 6.3,
7.1 and 8.2, while the 50-year return value, Hs50, is required for DLC 6.1 and 6.2 [129]. In each
of these design load cases, the estimated wave height return value determines a design load that is
used to evaluate structural integrity. Consequently, the model used to describe the distribution of
significant wave height influences wind turbine design via these design load cases.

Our results show that the current common technique of fitting a translated Weibull distribution
to significant wave height data using maximum likelihood estimation strongly underestimates the
1-year return value. At the six tested sites, the 1-year return value is underestimated on average by
about 30%. In some cases, the underestimation is even more severe. For example, in dataset A, the
empirical 1-year return value is about 6.7 m, but the fitted translated Weibull distribution predicts a
wave height of only 4.3 m.
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Figure 3.13: Weibull probability plots of conditional wave height distributions. Dataset D was sorted into
wind speed intervals (v = wind speed). Due to the shape parameter δ the exponentiated Weibull
distributions (dotted lines) can follow the curved lines of the empirical data. The displayed expo-
nentiated Weibull distributions were fitted using weighted least squares estimation.

In structural design, uncertainties are partly taken care of with safety factors, which are multiplied
with design loads (for details, see, for example, [129, pp. 66-68]). The normal safety factor for off-
shore wind turbines is 1.35 ([129]; see Table 3 in [128]), which is of similar magnitude as the typical
error when Hs1 is estimated based on a fitted translated Weibull distribution. This suggests that
the found errors can be critical for the safety of a wind turbine design, especially if a turbine is par-
ticularly wave-sensitive (for a discussion on wave-sensitive turbine design, see, for example, [256]).
The differences in the estimated 50-year return values are potentially even greater: For example, for
datasetB, the translated Weibull distribution predicts a 50-year return value of about 6 m, while the
WLS-fitted exponentiated Weibull distribution predicts a return value of about 12 m.

Besides the marginal distribution ofHs, the offshore wind standard IEC 61400-3-1 [129] requires
designers to estimate joint 50-year extremes of wind speed and wave height. In the standard’s DLC
1.6, designers need to estimate the conditional wave height distribution for a given wind speed, that
is F (hs|v). The standard does not prescribe which distribution should be assumed for F (hs|v),
however, researchers usually assume that conditional wave height follows a 2-parameter Weibull dis-
tribution (see, for example, [151, 155]). We tested how the 2-parameter Weibull distribution and the
exponentiated Weibull distribution fit to conditional wave height data, using dataset D (the hind-
cast coastDat-2 also contains hourly wind data). Visual inspection of Weibull probability paper plots
suggest that the exponentiated Weibull distribution fits better (Figure 3.13). In this thesis’ following
chapter, we will analyze the joint distribution of wind speed and significant wave height in detail. We
will model the conditional distribution of Hs with an exponentiated Weibull distribution and we
will explore, which expressions could be used to model the dependence functions of the parameters
α, β and γ.

3.6 Conclusions

In this chapter, it was shown that the exponentiated Weibull distribution matches the empirical dis-
tribution of significant wave height data better than the commonly used translated Weibull distribu-
tion. Since the exponentiated Weibull distribution does not add complexity when compared with
the translated Weibull distribution, we argue that it represents a better global model for significant
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wave height. In the six analyzed datasets, the translated Weibull distribution always predicted too
low 1-year return values. When the exponentiated Weibull distribution was fitted using maximum
likelihood estimation, it predicted too high 1-year return values in four of six cases. To improve its fit
at the tail, we estimated its parameters by minimizing the weighted squared error between the model
and the observations. The weights were chosen to quadratically increase with wave height. These
WLS-fitted distributions showed good fit over the complete range of the datasets. Overall mean ab-
solute error was in the order of 0.1 m and at the very tails (pi > 0.999) mean absolute error was
in the order of 0.5 m. Based on these results, we argue that if data do not indicate otherwise, the
exponentiated Weibull distribution should be fitted to wave data instead of the translated Weibull
distribution.

Data availability and Matlab implementation

The complete analysis performed in this study and the creation of the presented figures can be re-
produced by running the file CreateAllFigures.m that is available in the repository https://github.

com/ahaselsteiner/2019-paper-predicting-wave-heights. This repository also contains all datasets
– preprocessed and structured as they were used in this study. Alternatively, the raw data of this study
can be downloaded from the NDBC website, www.ndbc.noaa.gov, and from the coastDat-2 reposi-
tory, doi: https://doi.org/10.1594/WDCC/coastDat-2_WAM-North_Sea.

The considered distributions were implemented in custom Matlab code. We created a Matlab
class for each distribution. These classes provide functions to assess the PDF, the CDF, the ICDF,
to estimate the distribution’s parameters and draw samples from the distribution. They are publicly
available:

• https://github.com/ahaselsteiner/exponentiated-weibull

• https://github.com/ahaselsteiner/translated-weibull

• https://github.com/ahaselsteiner/generalized-gamma

• https://github.com/ahaselsteiner/beta-3p-second-kind

54

https://github.com/ahaselsteiner/2019-paper-predicting-wave-heights
https://github.com/ahaselsteiner/2019-paper-predicting-wave-heights
www.ndbc.noaa.gov
https://doi.org/10.1594/WDCC/coastDat-2_WAM-North_Sea
https://github.com/ahaselsteiner/exponentiated-weibull
https://github.com/ahaselsteiner/translated-weibull
https://github.com/ahaselsteiner/generalized-gamma
https://github.com/ahaselsteiner/beta-3p-second-kind


4 Joint distribution of wind speed,
wave height, and wave period

Previously published This chapter is based on a publication by Haselsteiner et al. [102]. The
chapter will introduce novel parametric models for the joint distribution of wind speed and wave
height as well as for the joint distribution of wave height and wave period. The wind speed - wave
height model represents one of three suggested improvements for the overall design process of off-
shore structures.

Publication’s full citation A. F. Haselsteiner, A. Sander, J.-H. Ohlendorf, and K.-D.
Thoben. “Global hierarchical models for wind and wave contours: Physical interpretations of the
dependence functions”. In: Proc. 39th International Conference on Ocean, Offshore and Arctic Engi-
neering (OMAE 2020). American Society of Mechanical Engineers (ASME), 2020. doi: 10.1115/
OMAE2020-18668

4.1 Introduction

Most joint distributions that are used to describe the metocean environment are not based on
physical models. As discussed in the previous chapter, the marginal distribution of the signifi-
cant wave height is sometimes modeled with a 2-parameter Weibull distribution [13], a 3-parameter
Weibull distribution [195], a gamma distribution [198] or a hybrid log-normal-Weibull distribution
(“Lonowe model”) [110] and there is no physical model that supports the use of any particular dis-
tribution. Similarly, the state-of-the-art dependence structures between the metocean variables do
not offer direct physical interpretation.

In engineering, probably the most used model type for the joint distribution of metocean variables
is the global hierarchical model [47, 92]. In this model type, joint distributions are built up using
conditional parametric distributions. For example, significant wave height Hs might be modeled
with a marginal 3-parameter Weibull distribution and wind speed V with a 2-parameter Weibull
distribution whose parameters depend on the value of Hs [47, p. 78]. Then so-called dependence
functions are used, which in the wind speed - wave height case might be αV (hs) = c1 + c2h

c3
s

where αV represents the wind distribution’s scale parameter. Such a dependence function might
fit well to a particular dataset, however, it does not provide direct physical insights. As one cannot
physically interpret such a dependence function, reasoning how well a particular fitted dependence
function extrapolates outside a dataset could be called statistically informed guessing.

To describe the offshore environment, two bivariate joint distributions are commonly used: the
distribution of sea states,FHs,Tz , and the distribution of wind speed - wave height states,FV,Hs . The
classification society DNV recommends the use of hierarchical model structures, each with 9 param-
eters, for these two joint distributions [47]. Their model structures are also widely used in academic
publications (see, for example, [92, 246, 255]). In a recent benchmark study [93] co-organized by
the author of this thesis, the authors used the recommended model structures and intentionally ap-
plied them without checking whether the models were appropriate for a particular offshore site. This
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Figure 4.1: Problems in state-of-the-art joint models for sea states and for wind speed - wave height states.
Left: The fitted recommended sea state model has too low probability density at high wave heights.
Right: The fitted recommended wind-wave model has too high density at the region of high wave
heights and medium wind speeds. There, lines of constant density have negative curvature while
empirical (kernel density estimation) lines of constant density have positive curvature. The plots
are based on datasets A and D, respectively.

task was conducted to provide baseline results for the exercise. The fitted joint distributions did not
match the empirical distributions properly: The sea state joint model FHs,Tz underestimated the
occurrence of high wave heights and the dependence structure of the wind-wave joint model FV,Hs

described an incorrect relationship between the two variables (Figure 4.1).
This work was motivated by the potential advantages that dependence functions that can be in-

terpreted physically could offer. Much is known about how winds and waves behave: how wind
generates waves, when waves break and how wind sea and swell mix. If we can utilize this knowledge
in the formalization of the joint model of environmental variables we should be able to design mod-
els that extrapolate better and whose parameters can be interpreted physically. In this study, we will
design a novel dependence structure for the joint distribution of significant wave height and zero-up-
crossing period, FHs,Tz , and a novel dependence structure for wind speed and wave height, FV,Hs.
We will focus on using physically interpretable expressions that describe howTz depends onHs and
how Hs depends on V . Then, we will estimate the parameters of these distributions by fitting the
models to six datasets describing metocean conditions in the Atlantic and in the North Sea.

4.2 Research methodology

4.2.1 Datasets

To test our models, we used six datasets: three datasets that describe sea states (Hs-Tz , datasets A,
B, C) and three datasets that describe wind-wave states (V -Hs, datasets D,E, F ; Table 4.1). These
are the same datasets that were also used in Chapter 3. Additionally, these datasets were used in a
benchmarking study on estimating extreme environmental conditions [92, 93]. Datasets A, B and
C are from buoys of the National Data Buoy Center [192] and cover 10 years of hourly sea state
conditions. Datasets D, E and F were retrieved from the hindcast coastDat-2 [80] and cover 25
years of hourly wind and wave data. The wind data represent a 10-minute mean value, measured
10 m above sea level.
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Dataset Variables Site Data source

A Hs, Tz off Maine coast buoy 44007 [192]
B Hs, Tz off Florida coast buoy 41009 [192]
C Hs, Tz Gulf of Mexico buoy 42001 [192]
D V , Hs off German coast hindcast [80]
E V , Hs off UK coast hindcast [80]
F V , Hs off Norwegian coast hindcast [80]

Table 4.1: Used datasets. These are the same locations and data sources as in the study presented in Chapter 3.

4.2.2 Global hierarchical models

As described in Section 2.3.1, global hierarchical models are joint distribution models that cover the
complete range of an environmental variable (“global”) and which follow a particular hierarchical
dependence structure. In a global hierarchical model, if the joint density function is factorized, sim-
ple terms for the univariate density functions exist. Let X1 and X2 represent random variables, for
example X1 = V and X2 = Hs, and let fX1,X2(x1, x2) represent its joint density function. Then
the factorization

fX1,X2(x1, x2) = fX1(x1)fX2|X1
(x2|x1) (4.1)

describes a hierarchy where a random variable with index i can only depend upon random variables
with indices less than i. In the two-dimensional case, random variable X1 is independent and ran-
dom variable X2 is conditional on X1 (Xi|Xi−1 with i = 2). Usually, simple parametric distri-
butions are assumed for the random variables and the dependence of X2 under X1 is modeled us-
ing simple dependence functions with 2 to 4 parameters (see, for example, [17, 34, 116, 118, 151,
168]). Let α2 and β2 represent the parameters of the second distribution. Then these parameters
might be modeled with dependence functions h[parameter] with n parameters (denoted as ci and di,
i = 1, ..., n):

α2 = hα(x1; c1, c2, ..., cn),

β2 = hβ(x1; d1, d2, ..., dn).
(4.2)

Typical expressions are a power function, hα(x1) = c1 + c2x
c3
1 , or an exponential function,

hα(x1) = d1 + d2e
d3x1 [47].

We assumed the following model for sea states: Significant wave height follows an exponentiated
Weibull distribution and zero-up-crossing period follows a log-normal distribution that depends on
the value of Hs. The exponentiated Weibull distribution has been proposed to model Hs in Chap-
ter 3 and the log-normal distribution is a usual choice for modeling Tz|Hs [47]. The two distribu-
tions read

F (hs) =
(︂
1− exp

[︂
−(hs/α)

β
]︂)︂δ

,

F (tz|hs) =
1

2
+

1

2
erf
(︃
ln tz − µtz√

2σtz

)︃
.

(4.3)

We modeled the log-normal distribution’s parameterµtz with a two-parameter dependence func-
tion:

µtz = ln

(︄
c1 + c2

√︄
hs
g

)︄
, (4.4)
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where g is the acceleration due to gravity, g = 9.81m s−2 and c1 and c2 are parameters that will be
estimated. The parameter µtz can be directly related to the period’s median, t̃z = eµtz . Thus, the
dependence function implies

t̃z = c1 + c2

√︄
hs
g
, (4.5)

which is an expression that is physically consistent if [t̃z]= s, [hs]= m and [g]= m s−2 if [c1]= m and
c2 is unitless. The parameterσtz is modeled with an asymptotically decreasing dependence function:

σtz = c3 +
c4

1 + c5hs
. (4.6)

For the wind speed - wave height joint distribution, the following model is assumed: Wind speed
follows an exponentiated Weibull distribution and significant wave height follows an exponentiated
Weibull distribution that is conditional on the value of V :

F (v) =
(︂
1− exp

[︂
−(v/α)β

]︂)︂δ
,

F (hs|v) =
(︂
1− exp

[︂
−(hs/αhs)

βhs

]︂)︂δhs
.

(4.7)

Weibull distributions are a typical choice for both, wind speed and wave height. However, wave
height is usually modeled with a translated Weibull distribution and wind speed with a 2-parameter
Weibull distribution depending on the value of Hs (see, for example, [47, 93]) instead of the ex-
ponentiated Weibull distribution. Here, we used the exponentiated Weibull distribution for wind
speed, as the 2-parameter Weibull distribution provided bad model fit for one of the datasets.

We modeled the dependence structure between the two variables by assuming two relationships:
1) the median of Hs increases with wind speed,

h̃s = c6 + c7v
c8
∗ , (4.8)

where the non-dimensional wind speed v∗ = v/vc, with vc = 1 m s−1; and 2) the shape parameter
βhs follows a logistics function,

βhs = c9 +
c10

1 + e−c11(v−c12)
. (4.9)

We used non-dimensional wind speed in Expression 4.8 to ensure that the units of the equation are
correct if [h̃s] = m, [c6] = m, [c7] = m, and [c8] is unitless.

Because exponentiated Weibull’s quantile function reads

Q(p) = α
[︂
−1 ln(1− p1/δhs)

]︂1/βhs

, (4.10)

the median wave height can also be expressed as

h̃s = Q(0.5) = αhs

[︂
−1 ln(1− 0.51/δhs)

]︂1/βhs

. (4.11)
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In our model, the exponent of the exponentiated Weibull distribution is set to δhs = 5 such that

h̃s = αhs

[︂
−1 ln(1− 0.51/5)

]︂1/βhs

,

h̃s = αhs2.0445
1/βhs .

(4.12)

Rearranging this equation to express the dependence function ofαhs and substituting h̃s with (4.8),
we obtain

αhs = (c6 + c7v
c8)/2.04451/βhs . (4.13)

This structure has the advantage that the relationship between typical (median) wave height values
and wind speed values is modeled with a simple expression that can be interpreted physically. The
estimated exponent c8 might imply that h̃s increases linearly, quadratically or something in between
with increasing wind speed and its value can be compared with theories on wind-generated seas (see,
for example, [115])

4.2.3 Parameter estimation

The eight parameters of the sea state model and the ten parameters of the wind speed - wave height
model were estimated by fitting the described model structure to each of the datasets. All computa-
tions were performed using the open-source Python software viroconcom in version 1.3.9 [95].

We fitted the sea state model by following a stepwise process: First the marginal distribution of
Hs was fitted by using the weighted least squares method that was presented in Chapter 3. Second,
zero-up-crossing period was sorted intoHs intervals. We used an interval size of 0.5 m. Third, distri-
butions were fitted to zero-up-crossing period in each interval that held at least 50 data points using
maximum likelihood estimation. Finally, the dependence functions were fitted using nonlinear least
squares.

Similarly, the parameters of the wind speed - wave height models were estimated following a step-
wise process: The marginal distribution of V and the distribution of Hs in each interval were fitted
using the weighted least squares method (Chapter 3). The interval size was 2 m s−1 and the required
number of data points within each bin was set to 50 as well. Dependence functions were fitted us-
ing nonlinear least squares with weights of (1 / parameter value). As a consequence, the estimated
dependence function will fit the observations at small parameter values better, at the expense of a
higher error at large parameter values (compared to if no weights were used).

4.3 Results

4.3.1 Overall model fit

Table 4.2 presents the estimated parameters of the joint distribution models and Figure 4.2 and Fig-
ure 4.3 show the joint models’ density functions. Both, the sea state, and the wind speed - wave
height models appear to catch the two-dimensional structure of the datasets. Constant density lines
of the joint model describe smooth versions of empirical density lines, which are estimated using ker-
nel density estimation (Figure 4.2 and Figure 4.3). Conditional median values of the model and the
original datasets compare well too: In the sea state model they match well, except at very low wave
heights (Hs < 0.5m); in the wind speed - wave height model the fit of the conditional median value
is good across the complete wind speed range.
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Dataset Significant wave height Zero-up-crossing period, log-normal distribution

Exponentiated Weibull distribution µtz(hs) = ln

(︃
c1 + c2

√︃
hs

g

)︃
σtz(hs) = c3 +

c4
1 + c5hs

α (scale) β (shape) δ (shape) c1 c2 c3 c4 c5
A 0.207 0.684 7.79 3.62 5.77 0 0.324 0.404
B 0.0988 0.584 36.6 3.54 5.31 0 0.241 0.256
C 0.227 0.697 9.85 2.71 6.51 0.0109 0.147 0.236

Wind speed Significant wave height, exponentiated Weibull distribution with δhs = 5

Exponentiated Weibull distribution αhs(v) = (c6 + c7v
c8
∗ )/2.04451/βhs(v) βhs(v) = c9 +

c10
1 + e−c11(v−c12)

α (scale) β (shape) δ (shape) c6 c7 c8 c9 c10 c11 c12
D 10.0 2.42 0.761 0.488 0.0114 2.03 0.714 1.70 0.304 8.77
E 10.8 2.48 0.683 0.617 0.0174 1.87 0.724 2.01 0.309 9.59
F 11.5 2.56 0.534 1.09 0.0251 1.80 0.726 1.89 0.194 13.4

Table 4.2: Fitted sea state (datasets A,B,C) and wind speed - wave height (datasets D,E, F ) joint models. g = acceleration due to gravity, v∗ = non-dimensional wind
speed (v∗ = v/vc, vc = 1 m s−1)
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4.3 Results

Another way to assess overall model fit is to compare the marginal distributions of the original
dataset and the fitted joint model. Figure 4.4 and Figure 4.5 show quantile-quantile plots of the
marginal distributions of the sea state and wind-wave models, respectively. At the highest quantiles,
notable deviations are apparent for significant wave height in dataset A and for zero-up-crossing
period in dataset B. In dataset A higher wave heights are predicted by the model and in dataset B
lower periods are predicted by the model.

The results presented in this chapter were also submitted to a benchmarking exercise on environ-
mental contours. In the manuscript that presented the results of this exercise [92] further analysis
for the model is provided. Additionally, it provides a comparison with eight other contributions to
the benchmark, which used different types of joint distribution models. Because this benchmark-
ing study was a joint work with 21 colleagues, its results are not presented in this thesis. A similar
benchmarking study, that focused on modeling the marginal distribution of significant wave height
and the influence of a changing climate was announced in 2021 [91, 157]. This study will make use a
recently published 700-year long hindcast dataset [11, 231] such that estimates for the 50-year wave
height return value can be better analyzed than with common hindcast datasets that cover less than
100 years.

4.3.2 Dependence functions

The estimated parameter values suggest that dependence structures of the sea state models have com-
mon characteristics (Figure 4.6). The dependence functions for the parameter µtz imply a relation-
ship for the median Tz given Hs

t̃z(hs) = [2.7 s, 3.6 s] + [5.3, 6.5]
√︁
hs/g, (4.14)

where values within the brackets hold the lowest and highest parameter values among the three
datasets (parameters c1 and c2 in Table 4.2). For high sea states, hs = 10m, these dependence
functions predict t̃z = {9.5 s, 8.9 s, 9.3 s} for datasets A, B and C , respectively. Visually compar-
ing these predicted sea states with the datasets suggest that the dependence functions are reasonable
(Figure 4.2).

These dependence functions can also be used to analyze what they imply for steepness. Steepness,
sz , is a non-dimensional variable that describes a sea state [115, p. 88]:

sz =
2πhs
gt2z

. (4.15)

Using our expression for t̃z , we can derive a model for expected median steepness, s̃z :

s̃z =
2πhs

g(c1 + c2
√︁

hs/g)2
. (4.16)

A plot of steepness over significant wave height suggests that the predicted median steepness is reason-
able (Figure 4.7). Interestingly, the used datasets contain many data points whose steepness exceeds
1/15, which is sometimes seen as an upper limit due to wave breaking (see, for example, [115, p. 88]).

Similarly, dependence functions of fitted wind speed - wave height models show sim-
ilarities among the three datasets and can be physically interpreted (Figure 4.8). The
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Figure 4.2: Overall model fit of the sea state joint model. Left: Lines of constant probability density f =
{0.001, 0.05} of a kernel density estimate (KDE), which represents empirical density, and of
the proposed global hierarchical model. Right: Comparison of the conditional median zero-up-
crossing period given significant wave height.

62



4.3 Results

0 5 10 15 20 25 30 35

Wind speed (m s ) −1

0

2

4

6

8

10

12

14

16

18

Si
gn

ifi
ca

nt
 w

av
e 

he
ig

ht
 (m

)
Dataset  D
KDE, constant density
Model, constant density

0 5 10 15 20 25 30 35

Wind speed (m s ) −1

0

2

4

6

8

10

12

14

16

18

Si
gn

ifi
ca

nt
 w

av
e 

he
ig

ht
 (m

)

Dataset  D
Median |  of dataset H V s

Median |  of model H V s

0 5 10 15 20 25 30 35

Wind speed (m s ) −1

0

2

4

6

8

10

12

14

16

18

Si
gn

ifi
ca

nt
 w

av
e 

he
ig

ht
 (m

)

Dataset  E
KDE, constant density
Model, constant density

0 5 10 15 20 25 30 35

Wind speed (m s ) −1

0

2

4

6

8

10

12

14

16

18

Si
gn

ifi
ca

nt
 w

av
e 

he
ig

ht
 (m

)
Dataset  E
Median |  of dataset H V s

Median |  of model H V s

0 5 10 15 20 25 30 35

Wind speed (m s ) −1

0

2

4

6

8

10

12

14

16

18

Si
gn

ifi
ca

nt
 w

av
e 

he
ig

ht
 (m

)

Dataset  F
KDE, constant density
Model, constant density

0 5 10 15 20 25 30 35

Wind speed (m s ) −1

0

2

4

6

8

10

12

14

16

18

Si
gn

ifi
ca

nt
 w

av
e 

he
ig

ht
 (m

)

Dataset  F
Median |  of dataset H V s

Median |  of model H V s

Figure 4.3: Overall model fit of the wind speed - wave height joint model. Left: Lines of constant probability
density f = {0.0001, 0.01} of a kernel density estimate (KDE), which represents empirical den-
sity, and of the proposed global hierarchical model. Right: Comparison of the conditional median
significant wave height given wind speed.
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Figure 4.4: Quantile-quantile plots of the marginal distributions of the sea state joint distribution model.
Straight lines indicate a perfect fit between the empirical distribution and the model distribution.
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Figure 4.5: Quantile-quantile plots of the marginal distributions of the wind speed - wave height joint distri-
bution model. Straight lines indicate a perfect fit between the empirical distribution and the model
distribution.
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Figure 4.6: Sea state joint model. The dependence function of µtz is designed such that the median of the
zero-up-crossing period increases with

√︁
hs/g where hs represents significant wave height and g

represents the acceleration due to gravity at Earth’s surface.

Figure 4.7: The dependence function for median zero-up-crossing period given wave height can be used to
derive the predicted relationship for the median of steepness as a function of wave height.
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Figure 4.8: Wind speed - wave height joint model. The dependence function of the scale parameter αhs is
based on the median of significant wave height h̃s, which is modeled as h̃s = c6 + c7v

c8 where v
represents wind speed.

median of significant wave height increases with wind speed in the following manner:
h̃s = [0.5m, 1.1m] + [0.011m, 0.025m]v

[1.8, 2.0]
∗ , (4.17)

where values within the brackets hold the lowest and highest coefficient values among the three
datasets (parameters c6, c7, and c8 in Table 4.2).

This suggests that there are two parts to significant wave height: one part that is independent of
local wind speed and is in the order of 1 m and one part that increases with wind speed, where the in-
crease is more than linear, but at two sites also less than quadratic. The first part could be interpreted
as either a swell component or as waves that were generated locally, but in the past. The second part is
especially interesting as it might offer insights into the nature of the sea state. The found exponents
between 1 and 2 lie between the limits of two different kind of seas: In fully developed wind-generated
seas that follow a Pierson-Moskowitz spectrum, significant wave height quadratically increases with
wind speed [200, p. 35]. In seas, which are not fully developed, significant wave height might in-
crease linearly (if they are fetch-limited) or with v9/7 if they are duration-limited [240, p. 360].

4.3.3 Exponentiated Weibull distribution

The exponentiated Weibull distribution is a novel distribution choice for sea state joint models and
for wind-wave joint models. The marginal distribution of Hs was modeled well with the exponen-
tiated Weibull distribution and a detailed analysis on its goodness of fit for datasets A, B and C was
presented in Chapter 3.

In the wind speed - wave height models, we used the exponentiated Weibull distribution to model
the marginal distribution of wind speed. Usually, a 2-parameter Weibull distribution is used instead,
which is an exponentiated Weibull distribution with δ = 1. Thus, thanks to its additional parameter,
an exponentiated Weibull distribution will fit any dataset at least as good as a 2-parameter Weibull
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Figure 4.9: In dataset F wind speed does not follow a two-parameter Weibull distribution at high quantiles.

distribution. However, the additional parameter adds complexity and therefore its use over the 2-
parameter Weibull distribution should be justified. The distribution of wind speed in datasetsD and
E can be described well with a 2-parameter Weibull distribution, however, in dataset F the data do
not follow a 2-parameter Weibull distribution at high wind speeds (Figure 4.9). A fitted 2-parameter
Weibull distribution would predict too high wind speeds in dataset F while a fitted exponentiated
Weibull distribution can follow the shape of the empirical distribution and thus can predict wind
speeds better (Figure 4.5). Interestingly, the estimated values for the second shape parameter, δ,
where less than 1 in all three datasets (Table 4.2). This is in contrast to the δ values that were estimated
for the marginal distribution of significant wave height: they were greater than 1 in all datasets.

Finally, we used the exponentiated Weibull distribution to model the distribution of significant
wave height within given wind speed intervals. To keep model complexity – measured in numbers of
free parameters – in balance, we used an exponentiated Weibull distribution with a fixed exponent
of δ = 5. This choice was based on first fitting exponentiated Weibull distributions with free expo-
nents to binned wave data. We found that δ varied between 2 and 23 and that it followed a bell-like
curve (Figure 4.10). Based on these results we decided to set δ = 5 and to fit these fixed-exponent
distributions again such that we would get the parameter values of α and β that lead to the best fit
with δ = 5.

The exponentiated Weibull distributions with δ = 5 showed good model fit at all wind speed in-
tervals (Figure 4.11). Plotting the distribution on Weibull paper illustrates that a 2-parameter Weibull
distribution is insufficient to describe the empirical distribution. The second shape parameter of the
exponentiated Weibull distribution, δ = 5, however, enables the distribution to follow the shape
of the data. These results suggest that if data do not indicate otherwise, conditional significant wave
height data should be assumed to follow an exponentiated Weibull distribution.

4.3.4 Extrapolation

To derive extreme loads with return periods of 50 years or higher, we would need to extrapolate
beyond the duration of the datasets. Figure 4.12 shows lines of very low constant density plotted
on top of the datasets. Although we do not have enough data to allow a direct comparison between
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Figure 4.10: Estimates for the second shape parameter, δhs, of the exponentiated Weibull distribution at dif-
ferent wind speed intervals. Although the exponent changes, in our model, we set δhs = 5 to
reduce model complexity.

Figure 4.11: Weibull probability plots for significant wave height at different wind speeds. The exponentiated
Weibull distribution with δ = 5describes the data better than a 2-parameter Weibull distribution.
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Figure 4.12: Extrapolation outside the dataset. Lines of very low probability density of fitted joint models
are shown. Top: The behavior of typical periods for a given wave height seems reasonable, but
the wave breaking limit is not respected by the joint model. Bottom: The way the joint model
extrapolates at joint extreme wind speeds and wave heights appears reasonable, but at dataset E
the region of joint low wind speeds and wave heights appears questionable.

empirical density values and model density values at levels below ∼ 10−5, we can reason whether
the model’s behavior in the tail appears logical.

In the sea state model, theHs peaks of isodensity curves appear at higherTz values as the probabil-
ity density decreases (Figure 4.12). This behavior seems reasonable as it is caused by the dependence
function that dictates that the median tz|hs increases with

√
hs. Unfortunately, the sea state model

seems to ignore the wave breaking limit: For a given significant wave height value there is a lower Tz

limit which is not exceeded as waves would otherwise break. Consequently, in the joint model the
lower tail of Tz|Hs seems to be too long. Future work could explore how sea state joint models can
better respect the wave breaking limit. One promising possibility for that is to fit a distribution to
steepness instead of zero-up-crossing period (see, for example, reference [163] and the environmental
model used in Chapter 7).

In the wind speed - wave height model the behavior at joint extreme wind speeds and wave heights
appears reasonable. Driven by the dependence function of the median hs|v typical significant wave
heights increase with v[1.8,2]. In deep waters, this relationship should hold for higher wind speeds. In
shallower waters, however, significant wave height may be additionally limited such that median hs
might increase with less than v[1.8,2]. The fitted joint model for dataset E has an unphysical artifact
at the region of low wind speeds and high wave heights. At the 10−9 probability density level, higher
wave heights occur at 1 m s−1 than at 10 m s−1. This seems unlikely. Future work could explore how
such model behavior can be avoided.
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4.4 Conclusions

In this chapter, it was shown how models for the long-term joint distribution of sea states FHs,Tz

and wind speed - wave height statesFV,Hs can be designed in a manner that the dependence function
of the conditional variable offers physical interpretation. We modeled the median of the zero-up-
crossing period to increase with

√
hs and the median of the significant wave height to increase with

vc where the exponent c was estimated to be between 1.8 and 2. The relationship t̃z ∝
√
hs ensures

that the wave period increases in a physically interpretable manner and the relationship h̃s ∝ vc

offers insights into which kind of sea the joint distribution describes.
In comparison with the joint models that are currently recommended in engineering guidelines,

the two proposed model structures appear to be an improvement: (1) Significant wave height is not
underestimated anymore; and (2) the dependence structure between wind speed and wave height is
improved. While the state-of-the-art wind speed - wave height model described constant density lines
with positive curvature, both the empirical data and the newly proposed model described constant
density lines with negative curvature. The author of this thesis believes that the proposed model
for the joint distribution of wind speed and wave height FV,Hs is a useful model for engineering,
however, he thinks that the joint model for wave height and wave period, FHs,Tz should be fur-
ther improved. The conditional distribution of zero-up-crossing period does not capture the wave
breaking limit well and might also underestimate or overestimate the right tail. Likely, a different dis-
tribution than the log-normal distribution is required to achieve improvement (the state-of-the-art
model also assumes a log-normal distribution for Tz|Hs and this assumption was not challenged in
this study).

While the two new joint models performed well within the support of the metocean dataset, it
is unclear how good they extrapolate outside the samples that were used to fit them. The models
were designed by focusing on the relationship of the conditional median value. As these relation-
ships are physically interpretable and have shown good model fit within the samples, we have higher
confidence in the extrapolation of these conditional median values than in the extrapolation at other
regions of the variable space. Future research could aim to build models, which are also physically
interpretable for non-median values. For example, the knowledge of the wave breaking limit, which
can be expressed using the non-dimensional parameter steepness, could be incorporated into a sea
state model.
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5 Environmental contours from
highest density regions

Previously published This chapter is based on publications by Haselsteiner et al. [96, 100]
and Mackay and Haselsteiner [158]. The chapter proposes a novel contour construction method,
whose approximation of the failure region is conservative for any deterministic response function.
The method is an alternative to the currently widely used IFORM contour method and represents
one of three suggested improvements to the overall design process of offshore structures.

Publication that introduced the highest density contour method A. F. Hasel-
steiner, J.-H. Ohlendorf, W. Wosniok, and K.-D. Thoben. “Deriving environmental contours from
highest density regions”. Coastal Engineering 123, 2017, pp. 42–51. doi: 10.1016/j.coastaleng.

2017.03.002

Publication that presented the directional design condition example E. Mackay
and A. F. Haselsteiner. “Marginal and total exceedance probabilities of environmental contours”.
Marine Structures 75, 2021. doi: 10.1016/j.marstruc.2020.102863

Publication that introduced “mild regions” A. F. Haselsteiner, E. Mackay, and K.-D.
Thoben. “Reducing conservatism in highest density environmental contours”. Applied Ocean Re-
search 117, 2021, p. 102936. doi: 10.1016/j.apor.2021.102936

5.1 Introduction

5.1.1 Purpose of environmental contours

Engineers must design any marine structure in such a way that it is able to withstand the loads
induced by the environment. As the environment, that is wind, waves and currents, continually
change and cannot be predicted for long periods of time, the environment is often modeled sta-
tistically by focusing on the probability distribution of variables likes the 10-minute average wind
speed or the significant wave height. Then, the structure is designed to withstand all but some ex-
tremely rare environmental states, for example, all waves with significant wave heights, Hs, less than
a threshold, hs, with a cumulative probability of 1 − α or an “exceedance probability” of α, that is
Pr(Hs ≤ hs) = 1 − α or Pr(Hs > hs) = α. In general notation for any random variable, X1,
there exists a threshold, x1, which fulfills

F (x1) = Pr(X1 ≤ x1) =

∫︂ x1

−∞
f(x)dx = 1− α, (5.1)

where F (x) is the distribution function and f(x) is the density function.
The exceedance probability α corresponds to a “recurrence” or “return period” of the environ-

mental conditions which describes the average time period between two consecutive environmental
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Figure 5.1: Concept of an environmental contour. (a) The environmental contour encloses all variable com-
binations which must be considered in the design process (the design region). (b) Flowchart de-
scribing the design process utilizing an environmental contour.

states above the threshold, x1. The threshold is called “return value.” For example, to comply with
standards, a marine structure such as an offshore wind turbine is required to withstand significant
wave heights, Hs, with a return period of 50 years [129].

Often, however, structural safety depends not only on one variable but on the occurrence of com-
binations of d variables, {Xj}dj=1. When two variables are of importance, for example, significant
wave height,Hs, and spectral peak period,Tp, a joint probability density function can be defined and
an environmental contour can be calculated which encloses the subset (or region) of environmental
states that the structure must be designed for. Here, we call this region “design region” (Figure 5.1).
Often the most critical structural response is associated with very high or low values of environmen-
tal variables, that is with environmental conditions located at the boundary of the design region.
Consequently, standards allow engineers to calculate structural responses for a limited set of envi-
ronmental “design conditions” along the contour instead of requiring engineering calculations based
on a high number of possible variable combinations spread over the complete design region [47]. If
there are more than two variables the concept of environmental contours leads to environmental
surfaces (3 variables) or environmental manifolds (> 3 variables). Here, for simplicity, we also refer
to these as environmental contours. In practice, environmental contours are often calculated for sea
states (see, for example, [53, 194, 263]) and wind speed - wave height states [129], but sometimes also
for other variables such as wave direction [7, 85], wind direction [254] or wind turbulence [88].

5.1.2 Different exceedance regions lead to different contours

As there are different mathematical definitions for environmental contours one has to further spec-
ify which kind of environmental contour is being constructed. Different concepts of environmen-
tal contours lead to different design loads and consequently to different structural responses [6].
The different concepts of environmental contours arise from different definitions of multivariate
exceedance. As described in Section 2.2.2, in contrast to univariate statistics, there exist no unique
definition for the multivariate quantile function and consequently also no unique definition for mul-
tivariate exceedance. Section 2.2.2 introduced some commonly used concepts for multivariate ex-
ceedance, namely AND exceedance, OR exceedance, angular exceedance and isodensity exceedance.
These types of exceedances – and in principle, any other definition for exceedance – can be used to
construct an environmental contour.

Originally, environmental contours arose from the concept of return values in univariate statistics,
which are calculated based on one-sided exceedance over a threshold (Figure 5.2a). Consequently,
a logical definition for an environmental contour is constant one-sided exceedance in all directions
of the d-dimensional variable space, Pr(X1 > x1, X2 > x2, ..., Xd > xd) = α. The bottom
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panel in Figure 5.2a shows the contour for the two-dimensional joint distribution of X1 and X2.
However, for design purposes not only the highest values of a variable can be of interest, but also
the lowest. When designing an offshore structure whose characteristics are not known beforehand,
low values of the peak period, Tp, have to be considered as the structure’s natural frequencies can
be either higher or lower than the average peak period. Accordingly, another possible definition for
an environmental contour is two-sided exceedance over threshold (Figure 5.2b; for example, [134]).
A third possibility is to define an environmental contour to have constant probability density, fm,
along its path enclosing the most likely environmental states (Figure 5.2c). In this case an N -year
return period means that on average every N years an environmental state with a probability den-
sity less than fm occurs. In the broader statistics literature the variable region enclosed by such a
contour is called a “highest density region” (HDR) [126]. Although HDRs are a logical concept for
environmental contours, no author has yet strictly followed this definition.

The constant probability density approach described in NORSOK’s standard N-003 [197] and in
DNV’s recommended practices [47], defines a fully closed contour of constant probability density.
However, it is defined in such a way that it is unclear how much probability is enclosed by the con-
tour. Instead, the contour’s probability density, f , is chosen to be the joint probability density of the
(x1, x2)-variable combination with x1 = return value based on the marginal x1-distribution and x2
= an associated x2 value (Table 5.1). Leira [148]1, however, has indeed used a highest density region
with a defined probability content, but only after a transformation of the original variables into stan-
dard normal space. When transforming the contour back to the original variable space, the constant
probability density is not preserved so that the resulting contour is not the boundary of a highest
density region in the original variable space. Here we will compute contours strictly following the
highest density region definition.

Table 5.1 presents an overview of all environmental contour methods that have been proposed.
Currently, the most used definition to construct an environmental contour is based on “angular
exceedance” (as introduced in Section 2.2.2). Either angular exceedance is applied in the standard
normal space – then the contour method is known as the “inverse first-order reliability method”
(IFORM) [108, 263] – or angular exceedance applied in the original variable space – then the contour
method is known as the direct sampling contour method [124, 125]. Engineering guidelines and
standards recommend the use of IFORM contours [47, 129, 197] and isodensity contours where
the density value is chosen based on the marginal distribution of the primary variable [197] (referred
to as “NORSOK’s constant probability density approach” in Table 5.1).

Following IFORM to construct a contour, one first defines a circle with radius β in the standard
normal space (Table 5.1). The radius corresponds to the return period and increases with longer
periods. Then one transforms the points along the circle to the original variable space leading to
the environmental contour. This transformation is done via the inverse Rosenblatt transformation
[215]. As its name implies IFORM is a reliability method and is based on the idea that the “ex-
ceedance region” approximates the “failure region” of a structure (and the exceedance probability α
approximates the structure’s “failure probability” pF ; see [165]). Contours based on IFORM are
widely used and have been published, for example, by Baarholm et al. [8], Eckert-Gallup et al. [53],
Leira [148], Li et al. [151], Liu et al. [155], Myers et al. [185], Saranyasoontorn and Manuel [219],
and Valamanesh et al. [243].

1In 2018 Chai and Leira [27] fully introduced the contour method that was firstly roughly formulated by Leira in 2008
[148]. As we proposed the highest density contour method in a Coastal Engineering article [100] in 2017, this chapter
uses only the literature that was available at that time as otherwise the motivation would be unclear. Another impor-
tant publication after 2017 was the extensive review on environmental contours by Ross et al. [216].
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Method Year Standard normal
variable space

Original
variable space

Haver’s design curve method [110] 1985

Tpl Tpu

α

Inverse first-order reliability method
(IFORM) [263] 1993

β α
f=const.

α
→

f=const.

α

α

NORSOK’s constant probability den-
sity approach [197] 2007*

f=const.

α

Direct sampling contour method [124] 2013

θα

α

Joint exceedance contour method [134] 2014

θ
rM0

α
α

Highest density contour method (this
work; first published in [100]) 2017

f=const.α

Table 5.1: Illustration of established contour construction methods. The methods use different definitions
for bivariate exceedance. α is the exceedance probability that is used to construct the contour, α =
TS/TR,target. In most methods, the contour is constructed in the original variable space. IFORM
contours, however, are constructed in standard normal space and are then transformed into the
original variable space. * Anecdotally, this approach has been proposed and used earlier, however,
the author of this thesis is not aware of an earlier reference.
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Figure 5.2: Environmental contours and their basis in univariate probability distributions. Top: Univariate
probability distributions (d = 1). Bottom: Example data and contours based on two-dimensional
joint probability distributions (d = 2). (a) One-sided exceedance based on AND exceedance. (b)
Two-sided exceedance based on AND exceedance. (c) Highest density regions with a minimum
probability density, fm.

Huseby et al. [124], however, pointed out that the Rosenblatt transformation introduces errors as
failure probabilities, pF , can be underestimated or overestimated on a case by case basis. Therefore,
they introduced an alternative method, the “direct sampling environmental contour method,” to
calculate environmental contours in the original variable space. Following their method, one first
carries out a Monte Carlo simulation to randomly draw a high number of environmental states from
a given joint probability distribution model. Then one chooses an angle θ defining a line (in two
dimensions, d = 2) and varies its position so that it divides the variable space into one halfspace
containing most data points and the other halfspace containing the data points representing the
exceedance probability, α × n (with n being the total number of simulated environmental states,
Table 5.1). By iterating this procedure over a finite number of angles, θ ∈ [0, 360), the resulting lines
can be connected to an environmental contour. This new approach has been picked up in several
recent publications, for example, to compare the approach to the traditional IFORM method [250],
to compare different statistical models [248] or to decrease the required process time [122]. While the
direct sampling environmental contour method overcomes the problems associated to the variable
transformation, it requires the Monte Carlo simulation of environmental states, which is typically
computationally more expensive than the simple IFORM calculations.

Jonathan et al. [134] defined environmental contours yet differently. They proposed to construct
contours with constant AND exceedance probability, Pr(X1 > x1, X2 > x2) = α (notation for
two dimensions, d = 2). Thus, instead of finding halfspaces which are tangential to the contour,
their exceedance regions have finite boundaries for each variable leading to outwards radiating rect-
angles in a two-dimensional Cartesian coordinate system (Table 5.1). As a result, contrary to IFORM
and the direct sampling method the method does not try to match the exceedance region with the
failure region. Following this method one first chooses a reference point, rM0, then defines a line
which passes through that point at an angle, θ, to the abscissa. Lastly the position along the line
which is exceed with probability α using the AND exceedance definition is found. Repeating this
procedure over a full circle, θ ∈ [0, 360), one finds the environmental contour. The method can be
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5 Environmental contours from highest density regions

applied in any variable space, in the original variable space or in the standard normal variable space.
Further, besides fully closed contours, one-sided exceedance was also considered by Jonathan et al.
[134].

Here, contours enclosing highest probability density regions are introduced. Such contours en-
close the most likely environmental states, which together make up a defined probability of 1 − α.
The probability that such a contour is exceeded anywhere, the total exceedance probability, is α.
The use of this definition is motivated by the fact any structure that is designed to withstand the
environmental conditions contained in the contour, will have a probability of failure less thanα (for
deterministic responses). This is in contrast to the IFORM and direct sampling contour, where the
important condition ofα = pF,target ≥ pF is only fulfilled if the failure region is fully contained in
one of the exceedance regions. Similarly, AND contours such as those presented by Jonathan et al.
[134] will have a total exceedance probability of more than α in that they also lead to the undesired
case that the structure’s probability of failure can be greater than α for some response functions.

Because IFORM contours are so widely used and their underlying idea of approximating the fail-
ure boundary with a straight line (in d = 2) is often accurate, it is worth pointing out some examples
where the IFORM approximation is non-conservative. In these cases, if design loads are derived from
an IFORM contour and the structure is designed to withstand only these loads, the true probability
of failure will be higher than the target probability of failure. This problem occurs if the failure region
is concave at the point that touches the environmental contour. This can happen, for example,

• for contours in the significant wave height - wave period variable space if the structure has two
distinct eigenfrequencies (such an example is presented in a joint publication with Ed Mackay
[158]),

• for contours in the wind speed - wave height variable space if offshore wind turbines are ana-
lyzed [152, 153, 220] (such an example will be presented in a case study in Chapter 7), and

• for directional environmental contours where contours are defined for thex andy component
of wind speed [254] or significant wave height [85] (such an example will be presented later
in this chapter).

Figure 5.3 shows three such examples. Another way in which IFORM’s approximation of the fail-
ure region can become non-conservative is if a single structure has multiple response variables that
have their highest response at different regions of the environmental variable space and consequently
at different regions along the contour. This is for example the case in offshore wind turbine design
(to be analyzed in detail in Chapter 7). Consider the bending moment of a turbine’s support struc-
ture, a monopile, at various water depths, for example at 5 m water depth and at 30 m water depth
(Figure 5.4 right). The bending moment is mainly caused by wind and wave forces, which act at
different heights and consequently with different levers (moment = lever × force). As a simplifica-
tion, all wave forces and all wind forces can be summarized as two point forces. Because the center
of pressure of wave forces is at a much lower height than the center of pressure of wind forces, the
relative contribution of wave forces on the overall bending moment increases as the water depth in-
creases (at a water depth of 0 m, wave forces have a lever of approximately 0 m, but at the ocean floor,
wave forces have a lever of approximately the total water depth). Thus, the highest value along the
contour of the 5 m moment occurs ca. at 15 m s−1 wind speed, but for the 30 m moment, it occurs
at ca. 35 m s−1 wind speed (Figure 5.4 left). If the monopile’s wall thickness is optimized based on
the highest bending moment values along the contour at both heights, two individual failure regions
will touch the contour at two distinct wind speed values. The monopile’s overall failure region is the
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Figure 5.3: Examples of single responses where the approximation of the failure region of an IFORM [263] or
direct sampling [124] environmental contour is non-conservative. In all three cases, the true failure
region extends beyond the approximated failure region. Left: A response with two distinct eigen-
frequencies [158]. Middle: The 10 m bending moment of an offshore wind turbine (Chapter 7).
Right: A response of a structure that is designed to be stronger in the direction of the highest waves
(example will be introduced in detail later in this Chapter).

union of the individual failure regions of the two (or more) response variables. Hence, the overall
failure region is non-convex and contains a probability greater than α.

If one is not sure whether the IFORM contour definition is conservative in a particular applica-
tion, a highest density contour can be constructed instead. A highest density contour will always
yield conservative design conditions (for deterministic responses) as its total exceedance probability
is α. By definition a highest density contour is surrounded by an exceedance region that contains
α probability. Consequently, the failure region of any structure that is designed based on a highest
density contour is a subset of the exceedance region and contains less thanα probability (Figure 5.5).

Here, we will construct highest density contours in the original variable space and we will com-
pute them using numerical integration. Although only simple two-dimensional examples will be
presented, the concept generalizes to more than two dimensions and a three-dimensional example
will be given in a case study presented in Chapter 7.

5.2 Highest density contour

5.2.1 Analytical definition

The goal is to find a contour of constant probability density that encloses a probability of1−α. Such
a contour surrounds a so-called highest density region, which is a statistical concept that is used in
various contexts (see, for example, [126]). A highest density region R is the smallest possible region
in the variable space that contains a given probability content. Mathematically, it can be expressed as
the set of all x whose probability density is greater than a threshold fm:

R(fm) = {x ∈ Rd : f(x) ≥ fm}, (5.2)

where f(x) is the joint density function and fm is chosen as the largest threshold that yields a region,
which contains a probability of at least 1− α, that is

fm = argmax
f∈[0,∞)

Pr[X ∈ R(f)] ≥ 1− α. (5.3)
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Figure 5.4: Example of how the combination of multiple response variables can cause the IFORM approxi-
mation to become non-conservative. Shown are failure surfaces from response variables relevant
to the design of offshore wind turbine foundations. The relative contribution of wave forces is
greater for the moment at 30 m than for the moment at 5 m water depth (will be shown in detail
in Chapter 7). Consequently, their failure regions have different shapes and touch the contour at
different positions. The overall failure region is the union of the two individual failure regions. It
contains more than α probability.
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Figure 5.5: While a concave failure region can be problematic for an IFORM contour, it is not problematic for
a highest density contour. Because a highest density contour is fully surrounded by an exceedance
region ofαprobability, the failure region of any structure that is designed based on that contour is a
subset of the exceedance region and consequently contains less than α probability. Thus, the relia-
bility target is also met if the failure region is concave. Note that due to the definition of exceedance,
the highest density contour is larger than the IFORM contour and consequently its design condi-
tions lead to higher loads and responses.
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5.2 Highest density contour

Then, the α-exceedance highest density contour is defined as the set C(α) ⊂ R(fm) that contains
the environmental states where the probability density equals fm:

C(α) = {x ∈ Rd : f(x) = fm}. (5.4)

This contour C encloses the highest density region R. Therefore we call C “highest density con-
tour” (HDC). A highest density region fulfills two interesting properties: (1) the probability density
of every point inside is at least as large as the probability density of any point outside and (2) for a
given probability content the region occupies the smallest possible volume in the variable space [23].
There is no general analytic solution to find the HDR or HDC, that is solving for C or R in (5.2)
or (5.4).

HDRs, however, can be computed based on numerical integration approaches [268] or Monte
Carlo techniques [126]. Environmental contours involve very low α values and are usually based
on low-dimensional probability models. Accordingly, we choose numerical integration over Monte
Carlo simulation to compute the highest density contour C . However, if a probability model,
which incorporates many environmental variables (high d value), is evaluated, numerical integra-
tion might become infeasible and Monte Carlo approaches should be used. In the next section, the
two-dimensional case will be evaluated, but in the journal publication that this chapter is mainly
based on [100] the equations for d dimensions are given too.

5.2.2 Numerical implementation

First, a region in the variable space that contains almost the complete probability content is separated
into n cells, where each cell has a unique index i ∈ [1, n] (Figure 5.6).

The probability contained in cell i, pi, is approximated by multiplying the marginal probabilities
contained within this cell:

pi = [Fx(x
u
i )− Fx(x

l
i)]× [Fy|x(y

u
i |xci )− Fy|x(y

l
i|xci )], (5.5)

where xli, xci , xui represent the x coordinates of the cell’s lower boundary, center and upper bound-
ary, respectively, and yli and yui upper and lower boundary of the y coordinate. Fx represents the
marginal distribution function of the first variable X and Fy|x represents the conditional distribu-
tion function of the second variable Y given X . For briefer notation, we use X = X1, x = x1,
Y = X2, and y = x2 here.

Based on this probability, the average probability density for each cell is calculated by dividing by
the cell size:

f̄ i =
pi

∆x∆y
. (5.6)

After having calculated pi and f̄ i for all cells with indices i = {1, ..., n}, equation 5.3 is numerically
solved by first defining a function that returns the probability contained in RHD(f),

G(f) = Pr[X ∈ RHD(f)] ≈
n∑︂
i

pi : f̄ i ≥ f, (5.7)

and then finding the value f that fulfills G(f) = 1 + α:

fm ≈ f : G(f) = 1 + α. (5.8)
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Figure 5.6: Computation of the highest density contour (HDC) using a numerical grid. Shaded area = highest
density region (HDR), outline = HDC. (a) The variable space is discretized into equally sized grid
cells and the average probability density f̄ is calculated for each cell. The probability enclosed by
the highest density contour of fm probability density is calculated by first finding all cells whose
probability density f̄ is greater than or equal to the minimum probability density fm and then
summing up the individual probabilities of these cells. (b) An environmental contour is computed
by finding the probability density fm that satisfies G(fm) = 1− α.

fm can either be found by solving the root finding problem G(f) − 1 + α = 0, for example with
Matlab’s function fzero, or by first sorting the cells by their fi values and then adding cells – starting
with the cell with the highest fi value and adding them in descending order – until G(fi) ≥ 1−α.
The last cell’s fi value is then taken as an estimate for fm.

The outlined scheme to compute a highest density contour is sensitive to the used grid resolution
and position, and it is necessary to check the cell size is small enough to ensure grid independence.
Consequently, a grid study will be included in one of the examples presented here.

5.3 Examples

5.3.1 Sea state environmental contour

In this example, the construction of contours that describe sea states with the variables significant
wave height Hs and zero-up-crossing period Tz will be considered. A joint distribution model that
has been used in many previous studies on the environmental contour method will be used. IFORM
and highest density contour will be constructed and compared.

Joint distribution

We use the joint distribution proposed by Vanem and Bitner-Gregersen [251]. Here, we assume
that the model represents the long-term distribution of 3-hour stationary processes2. Vanem and
Bitner-Gregersen [251] used the model to construct environmental contours using both the tradi-
tional IFORM and the newer direct sampling contour method [124]. In this global hierarchical

2The model, however, was derived by fitting its structure to sea state data from the ERA interim dataset [42], which
provides one data point per 6-hour interval. Nevertheless, it is assumed to represent 3-hour sea states in this work.
That the model was derived from 6-hour sea states was overlooked in the original study that was published in Coastal
Engineering [100]. As the model only served as an example and the comparison between contours is not affected by
assuming whether the joint distribution represents 3-hour or 6-hour sea states, the author of this thesis kept the way
the model was used in the Coastal Engineering publication also in this Chapter.
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model significant wave height Hs is modeled as a 3-parameter Weibull distribution with the param-
eters α (scale), β (shape), and γ (location):

fHs(hs) =
β

α

(︃
hs − γ

α

)︃β−1

exp

[︄
−
(︃
hs − γ

α

)︃β
]︄
; hs ≥ γ. (5.9)

Based on a least squares fit the parameters are α = 2.776, β = 1.471 and γ = 0.8888 [251].
The zero-up-crossing period Tz is modeled to follow a log-normal distribution:

fTz |Hs
(tz|hs; ˜︁µ, ˜︁σ) = 1

tz˜︁σ√2π
exp

[︃
−(ln tz − ˜︁µ)2

2˜︁σ2

]︃
. (5.10)

The distribution’s parameters, ˜︁µ and ˜︁σ, are conditional on significant wave height and are modeled
as 3-parameter functions:

˜︁µ(hs) = a1 + a2h
a3
s , (5.11)˜︁σ(hs) = b1 + b2 exp(b3hs). (5.12)

In this case they are estimated to be a1 = 0.1000, a2 = 1.489, a3 = 0.1901, b1 = 0.0400,
b2 = 0.1748, b3 = −0.2243 [251].

Multiplying the marginal distribution of the significant wave height and the conditional distribu-
tion of the zero-up-crossing period the joint distribution can be calculated:

fHs,Tz(hs, tz) = fHs(hs)fTz |Hs
(tz|hs). (5.13)

Because it is assumed that the data represents independent 3-hour sea states, exceedance probability
α for a N -year return period is calculated as

α =
1

N × 365.25× 24/3
. (5.14)

Computed contours

As in previous work based on the described sea state model [124, 251] we computed the 1-, 10-
and 25-year environmental contours (Figure 5.7). The corresponding exceedance probabilities were
α1 = 3.42 × 10−4, α10 = 3.42 × 10−5 and α25 = 1.37 × 10−5 respectively. The highest
density contours computed have constant probability densities of fm1 = 4.4 × 10−5 (1-year),
fm10 = 4.3 × 10−6 (10-year) and fm25 = 1.7 × 10−6 (25-year). Figure 5.8a shows how the
enclosed probability G monotonically decreases with increasing fm until it reaches G = 0. Since
the probability functions used here (Weibull and log-normal) are unbounded, G asymptotically ap-
proaches 1 as fm approaches 0. Figure 5.8b presents the maximumHs andTz values along a contour
of constant fm-probability density (Hs

∮︁ ,Tz
∮︁ ). Longer return periods lead to smaller fm values and

consequently to bigger contours with higher Hs
∮︁ and Tz

∮︁ values.
As discretization in general is sensitive to step size, we evaluated the contour’s robustness with re-

spect to grid cell size ∆x = ∆Hs, ∆y = ∆Tz . We analyzed how minimum probability density fm
changes with grid cell size. In all three tested return periods, (1-, 10- and 25-year contour) minimum
probability density fm was roughly constant at small cell sizes and started to fluctuate with increas-
ing cell size indicating a grid-independent solution can be reached (Figure 5.9a). Oversized grid cells
can lead to minimum probability density being half or double than the converged minimum prob-
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Figure 5.7: Computed highest density contours. Along the contour probability density fm is constant and
the enclosed region has a probability of 1−αwithα corresponding to a given target return period
(TR,target=1, 10 or 25 years). Grid cell size is 0.05 m×0.05 s.
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Figure 5.8: Expansion of the highest density contour. (a) The probability enclosed by the contour,G(fm), is 1
at a minimum probability density offm = 0 and monotonically decreases toG(fm ≈ 0.12) = 0.
Probabilities corresponding to the 1-,10- and 25-year contour are shown. The inset illustrates the
definition of G and fm. (b) Maximum variable values along the contour, Hs

∮︁ and Tz
∮︁ , as a

function of minimum probability density, fm. The inset illustrates that there is no (Hs
∮︁ ,Tz

∮︁ )-
sea state along the contour. Instead, the (Hs

∮︁ , Tz)-sea state has aTz value different fromTz
∮︁ and

vice versa.
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Figure 5.9: Grid independence study. Quadratic grid cells with sizes ranging from 0.01 to 10 units of grid cell
length are tested to evaluate grid convergence. (a) The contour’s minimum probability density fm
for a given return period is sensitive to grid cell size ∆Hs, ∆Tp. Sensitivity increases with grid cell
length. (b) If grid cell size is too big minimum probability densityfm can be half or double than the
converged minimum probability density. Plotted is f∗

m which is the minimum probability density,
fm, normalized by the converged fm value. (c) Aiming for grid convergence with an error of less
than 1 % we used grid cells with dimensions of 0.05 m×0.05 s (marked with a vertical line).

ability density (Figure 5.9b). For the given probability model convergence was reached at a grid cell
size of Hs = 0.05m and Tz = 0.05 s. There, deviation to the smallest tested grid cell size was less
than 1 %, 0.99 < f∗

m < 1.01, with f∗
m being minimum probability density, fm, normalized by

the converged fm value (Figure 5.9c). For comparison, we also computed environmental contours
using IFORM based on the same joint distribution. The highest density contours had shapes similar
as the contours calculated with IFORM and the direct sampling method (Figure 5.10c,d). However,
we defined a highest density contour to enclose a probability of 1 − α while an IFORM contour
and a direct sampling contour each enclose a probability less than 1 − α since by their definitions
multiple regions outside the contour have a probability ofα (Figure 5.10a). Consequently, the high-
est density contour’s dimensions in terms of Hs and Tz are bigger in comparison. For a more direct
comparison we can inflate an IFORM contour and find the N -year contour which encloses exactly
1 − α probability. Leira [148] showed that this can be done by utilizing the inverted Rayleigh dis-
tribution (for two dimensions). Leira [148] called these contours “equi-shape contours.”3 Here, it
is found that such a 25-year equi-shape contour corresponds to a 308.8-year IFORM contour. The
contour’s shape and size is roughly similar to the 25-year highest density contour. These similarities
suggest that the 308.8-year IFORM contour has approximately constant probability density along
the contour.

To visualize a typical dataset, we Monte Carlo simulated 25 years of 3-hour sea states (n = 73050;
gray dots in Figure 5.10c). In this particular dataset, one data point exceeds the highest density con-
tour while there are multiple data points exceeding the 25-year IFORM contour. The different
contour dimensions can also be expressed in terms of maximum Hs- and Tz values along the N -
year contour (Hs

∮︁
[N ], Tz

∮︁
[N ]). Here we find Hs

∮︁
25 = 16.79m and Tz

∮︁
25 = 14.64 s for the

highest density contour and Hs
∮︁
25 = 15.23m and Tz

∮︁
25 = 13.96 s for the IFORM contour

(Figure 5.10d). Thus, the highest density contour Hs
∮︁
25 value is 10.2 % higher than the IFORM

contour’s value. Consequently, from an engineering design point of view, highest density contours
yield more conservative requirements for design loads.

3In 2018, Chai and Leira [27] fully worked out the idea of constructing a contour that encloses 1 − α probability in
standard normal space. They called this method inverse second-order reliability method.
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5 Environmental contours from highest density regions

This does not only apply to the considered distribution but is a generic property based on the
different definitions of these contours. IFORM and direct sampling contours are defined to contain
the return value of the marginal distribution of the primary variableX1 as their highest variable value,
that is Hs

∮︁
25 = Hs25 (Figure 5.10a). On the other hand, a highest density contour is defined to

enclose 1−α probability. Since it does not contain allHs-Tz sea states fulfillingHs < Hs25 (which
together would make up 1− α probability) it must contain some sea states with Hs > Hs25.

By the highest density contour’s definition of an enclosed probability of 1−α, in an uncorrelated
random 25-year dataset the probability that at least one data point exceeds a 25-year contour is about
63.2 %, 1 − (1 − α25)

n ≈ 0.632 with n = 25 × 365.25 × 24/3 = 73050. Here, exceedance
precisely means that this sea state realization is anywhere outside the region enclosed by the contour.
Such a sea state occurs on average every 25 years. This simple and clear interpretation is why we have
chosen the definition of constant probability density and a probability of 1−α, that is defining the
contour to enclose the highest density region. We believe that this definition offers an intuitive and
meaningful concept for an N -year environmental contour in the engineering design process. If an
engineer designs a structure to withstand all sea states inside an N -year contour, the structure will
be designed for the most likely (extreme) sea states which are expected to occur in N years. Then on
average every N years a sea state will occur for which the structure is not designed. Some of these
values might lead to failure and some not.

Alternative concepts with multiple α-exceedance regions (see Table 5.1) are based on the idea of
known failure regions in the context of structural reliability methods (see [165]). IFORM assumes
that a structure’s failure region has a convex shape. It defines the α-halfspace exceedance regions
in its way because in that case the true failure surface can be linearized such that the variable space is
separated by a straight line at an angleθ into a survival region and a failure region (in two dimensions).
Then, this failure region overlaps with IFORM’s exceedance region. It has the failure probability
pF = α and the survival region the survival probability 1 − pF (for a deterministic response).
Here, however, we do not intend to align theα-probability exceedance region with a particular failure
region.

Nevertheless, the exceedance probabilityα can be compared with failure probabilitiespF from po-
tential structures. If the structure survives all environmental conditions along (and within) a highest
density environmental contour, it will have a probability of failure less than the exceedance proba-
bility. pF < α (for a deterministic response).

As described IFORM leads to a contour that encloses less than1−αprobability and consequently
results in less conservative design conditions compared to a highest density contour. If the structural
design, which is developed based on these environmental conditions, has a convex failure region,
the theoretical precondition of IFORM is met. Then in comparison, a highest density contour can
be seen as overly conservative. Thus, if the designer knows that a structure responds with a convex
failure region choosing an IFORM contour is advantageous in the sense that it yields less conservative
but still safe design conditions.

In a publication by Ed Mackay and the author of this thesis [158], we analyzed how design con-
ditions from IFORM, direct sampling and highest density contours lead to different responses by
using two simple deterministic response models. In the study, we used the same joint distribution to
represent sea states. In our first response model, a function that peaks at a particular period – such
a response function could represent a single degree of freedom system – all contour methods were
conservative. The response of the highest density contour was overly conservative. In our second
response model, a bimodal function, IFORM and direct sampling contours led to non-conservative
design conditions, while design conditions from the highest density contour were conservative.
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Figure 5.10: Comparison of environmental contours derived using different methods. (a) Sketches showing
expected differences in contour size due to different definitions. Some contours are defined in
such a way that the maximum value along the contour, Hs

∮︁
25, is equal to the return value of the

marginal distribution, Hs25, (middle). The highest density contour (HDC), however, is defined
to enclose 1 − α probability and thus has a maximum value along the contour which is higher
than the return value of the marginal distribution, Hs

∮︁
25 > Hs25, (right). (b) Sketch illustrat-

ing an IFORM contour and possible failure regions of a linear system of three components, F1,
F2, F3. Since the contour contains less than 1 − α probability the system’s failure probability
can be greater than α. (c) A total of n = 73050 sea state data points have been Monte Carlo
simulated representing a 25-year dataset (scatter plot). The 25-year HDC (solid line) and the 25-
year IFORM contour (short dashes) have similar shapes, but as expected the HDC is bigger. The
308.8-year IFORM contour or 25-year “equi-shape contour” (long dashes; [148]) encloses the
same amount of probability as the 25-year HDC. (d) Comparison of maximum values along the
contour, Hs

∮︁ andTz
∮︁ . As expected by the different definitions, the HDC has higher maximum

significant wave height Hs
∮︁ and maximum zero-up-crossing period Tz

∮︁ than the IFORM con-
tour.
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While many structures respond with a convex failure region in the Hs − Tp space, this precon-
dition for IFORM connects the environmental contour to a certain class of structures. The shape
of the failure surface might be unknown beforehand and only becomes apparent during the design
process. If it turns out that the failure surface is non-convex and therefore violates IFORM’s pre-
condition the designer would need to go one step backwards and define new design conditions by
inflating the IFORM contour. By not making use of the properties of possible structural responses,
the highest density contour is more conservative, but also more general in its application. It would
avoid the need of the described iteration loop in the design process.

Further, a highest density contour is advantageous in the design process of a structural problem of
a system consisting of multiple components. Consider a “series structure” consisting of z different
components withz different failure functions. In a series structure a failure of one component results
in failure of the system [12]. Suppose that each component fulfills IFORM’s precondition of having
a convex failure region. Nevertheless, the probability contained by the union of all z failure regions,
F1∪F2...∪Fz , could exceedα (Figure 5.10b). In that case it would be expected that more frequent
than every N years an environmental state occurs which leads to failure of some of the components
and consequently failure of the system. If on the other hand an environmental contour containing
1 − α probability were used to design the components, by definition the system’s probability of
failure would be less than α. Consequently, the system would be expected to survive longer than N
years.

A similar example can be given for a single component with multiple failure modes. The three fail-
ure regions shown in Figure 5.10b would then correspond to different failure modes and the same
conclusions as for the series structure could be drawn. These two examples explain why IFORM is
primarily aimed at assessing the reliability of one component failing in one failure mode. A high-
est density contour, on the other hand, can be used in these two cases without worrying that any
assumptions might be violated.

5.3.2 Contours for directional design conditions

In this example the specification of directional design conditions for the design or assessment of a
marine structure is considered. In many locations, the severity of wave conditions exhibits a depen-
dence on wave direction. Specifying the design wave height as a function of direction can allow the
optimization of an asymmetrical structure. Directional return values are often estimated in discrete
directional sectors. However, it is becoming more common to use extreme value models where the
model parameters vary smoothly with direction (for example [136, 209]). In these cases, environ-
mental contours can be used to define directional design conditions. In this example a previously
published joint distribution is used and three types of contours are considered: IFORM, direct sam-
pling, and highest density contours.

Joint distribution

We use a simple description of the joint distribution of Hs and wave direction Θ based on the joint
distribution of wind speed and direction given by Haghayeghi and Ketabdari [86] and studied fur-
ther by Vanem et al. [254] (Figure 5.11). Its joint density function fΘ,Hs can be written as a hierar-
chical model:

fΘ,Hs(θ, hs) = fΘ(θ)fHs|Θ(hs|θ). (5.15)
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Figure 5.11: A Monte Carlo sample of the joint distribution of significant wave height Hs and direction Θ.

i wi µi κi

1 0.21 2.10 0.74
2 0.79 5.54 13.11

Table 5.2: Parameters for distribution of wave direction.

The marginal distribution of wave direction is expressed as a mixture of von Mises distributions,

fΘ(θ) =
n∑︂

i=1

wifi(θ), (5.16)

where wi ∈ [0, 1] are weights and
∑︁n

i=1wi = 1. The PDF of the von Mises distribution is

fi(θ) =
exp[κi cos(θ − µi)]

2πI0(κi)
, (5.17)

where I0 is the zero-order modified Bessel function of the first kind, κi is a concentration factor and
µi is the location parameter. The model forHs conditional on direction is a three-parameter Weibull
distribution, with parameter dependence on direction given in terms of a Fourier series:

λ(θ) = a0 +

m∑︂
j=1

aj cos(jθ) + bj sin(jθ), (5.18)

k(θ) = c0 +

m∑︂
j=1

cj cos(jθ) + dj sin(jθ). (5.19)

The model presented in Haghayeghi and Ketabdari [86] uses m = 8 harmonics for the Fourier
series. In this example we assume the Weibull location parameter is constant at γ = 0.5. The other
distribution parameters are defined in Tables 5.2 and 5.3.
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j aj bj cj dj

0 1.875 1.910
1 0.345 -0.140 0.240 -0.130
2 -0.210 -0.820 -0.080 -0.170
3 -0.160 -0.200 -0.010 -0.030
4 -0.265 0.095 -0.110 0.030
5 -0.090 0.110 0.0004 0.003
6 0.070 0.070 0.060 0.020
7 0.030 0.020 0.060 0.020
8 0.030 -0.015 0.004 -0.010

Table 5.3: Fourier coefficients for distribution of Hs conditional on wave direction.

When constructing contours for directional distributions it is important to be clear about what
coordinate system is used. If IFORM or direct sampling contours are constructed in the Hs-Θ co-
ordinate system, then the contours will have upper and lower bounds for Θ for any directional dis-
tribution, which does not make sense from the perspective of structural reliability. Whether highest
density contours have upper and lower bounds on Θ depends on the shape of the joint PDF. The
construction of IFORM contours based on applying the Rosenblatt transformation in the form
Φ(U1) = FΘ(θ), Φ(U2) = FHs|Θ(hs|θ), was discussed in references [85, 86, 254]. The IFORM
contours presented in these works exhibit a discontinuity in the transition between 0 and 2π, due to
the upper and lower bounds for θ.

To address this issue, Vanem et al. [254] proposed deriving contours in terms of the x and y com-
ponents of significant wave height, defined as

hx = hs cos(θ), hy = hs sin(θ). (5.20)

The joint density function of hx and hy in Cartesian coordinates can be written as

fHx,Hy(hx, hy) = fΘ,Hs(θ, hs)

⃓⃓⃓⃓
∂(hs cos(θ), hs sin(θ))

∂(hs, θ)

⃓⃓⃓⃓−1

=
fΘ,Hs(θ, hs)

hs
. (5.21)

Note that since the Weibull location parameter γ is greater than zero in this example, the trans-
formed density function is non-singular at the origin since fΘ,Hs(θ, 0) = 0. In the following, all
considered contours are constructed in Hx-Hy space. This means that direct sampling contours as-
sume that the failure surface is linear in this space. For IFORM contours, the assumed failure surface
is not necessarily linear in Hx-Hy space, due to the use of the Rosenblatt transformation. However,
this is a common feature of the IFORM method for any parameter space, as discussed in references
[121, 122, 124].

Contours and responses

The 1-year IFORM, direct sampling and highest density environmental contours are shown in Fig-
ure 5.12 together with the 1-year omnidirectional return value (assuming that observations are at
3-hour intervals as before). As the isodensity contours of the joint distribution are close to convex in
(hx, hy) coordinates, the direct sampling and IFORM contours are in close agreement. The highest
density contour gives a maximum value of Hs approximately 1 m larger than the direct sampling
and IFORM contours. The IFORM contour exhibits a small ridge at around 90◦. This is a result
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Figure 5.12: 1-year environmental contours for joint distribution of Hs and wave direction Θ and 1-year om-
nidirectional return value.

of the use of the Rosenblatt transformation. The location of the ridge is dependent on the order of
variables used in the transformation, as discussed by Mackay and Haselsteiner [158].

Note that marginal probabilities in Cartesian Hx − Hy space do not correspond to marginal
probabilities of Hs. The set of points with Hs ≤ r is contained in the set of points with Hx ≤ r
(see Figure 5.13). Since this is true under any rotation of the axes, the maximum radius of a direct
sampling contour constructed in the Hx − Hy space will be less than the omnidirectional return
value. In the example considered here, the 1-year omnidirectional return value is 8.65 m and the
maximumHs on the direct sampling contour is 8.58 m. The maximumHs on the IFORM contour
is slightly higher, at 8.59 m, due to the effects of the Rosenblatt transformation (for a discussion on
this effect, see Mackay and Haselsteiner [158]).

Suppose that a structure has a deterministic omnidirectional response and is designed so that it
fails if the wave height exceeds the maximum value along an N -year IFORM or direct sampling con-
tour. Since the N -year omnidirectional return value of Hs is greater than the maximum value of Hs

along the contour, the structure will have a higher failure probability than intended. Now suppose
that the omnidirectional structure is designed using the omnidirectional return value at exceedance
probability α, denoted hα, so that the failure surface is located at hα and is independent of direc-
tion. In this case, the probability of failure will be equal to α, by definition, since hα is the value of
Hs that is exceeded with probability α, independent of direction. If the structure is asymmetric and
designed so that the failure surface is located at a value greater than or equal to hα in each direction,
then the probability of failure will be less than or equal to α. So the use of omnidirectional criteria
gives the target failure probability, but may lead to a less efficient design as the potential to optimize
the design with respect to direction is not exploited.

Now suppose that an asymmetric structure is optimized based on directional extreme conditions
from an environmental contour. For example, the stiffness of a fixed structure in a particular di-
rection could be optimized with respect to direction or similarly the mooring response of a floating
structure could be optimized to allow larger responses in directions where the wave conditions are
less severe.
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Figure 5.13: (a) Significant wave height hs =
√︂
h2
x + h2

y . Thus, the set of points with Hs ≤ r (hatched
area) is contained in the set of points with Hx ≤ r (blue area). This explains why the maximum
Hs on an N -year direct sampling contour is smaller than the N -year omnidirectional Hs return
value. (b) For the hatched area to contain the same probability as the shaded area, radius r must
be greater than the bound of the blue area on hx.

Consider a hypothetical marine structure that is fully optimized to directional values of Hs, such
that failure occurs immediately if the directional value of Hs is exceeded. In such a case it can be
seen from the results by Mackay and Haselsteiner [158] that if the directional values of Hs are speci-
fied based on IFORM or direct sampling contours then the failure probability will be approximately
10 times higher than the exceedance probability of the contour. So for this application, the use of
IFORM or direct sampling contours is not conservative. A similar argument was made by Forristall
[70]. He noted that if a structure is designed based on directional return values in discrete sectors,
each at exceedance probabilityα, then the failure probability of the structure is greater thanα. High-
est density contours at exceedance probability α have a total exceedance probability of α. Therefore,
if the hypothetical, fully optimized structure is designed using directional criteria derived from high-
est density contours then the failure probability will be equal to the contour exceedance probability
(under the assumption of a deterministic response).

The highest density contour as well as the omnidirectional return value contour all enclose a re-
gion of parameter space containing total probability 1 − α. From Figure 5.14 it is evident that the
highest density contour offers the potential for considerable directional optimization compared to
the omnidirectional contour, but at the cost of requiring a greater capacity in the sector between
300◦ and 330◦. Feld et al. [59] note that there are infinitely many ways to define directional criteria
which achieve the target reliability for the structure. Among the set of possible regions, a highest den-
sity region defines the smallest area containing probability 1−α. Similarly, one way to interpret the
omnidirectional return value is that it is the contour with the smallest radius containing probability
1− α.

In reality, no structure will be fully optimized in each direction. Instead, there can be a single
direction where exceeding the directional values leads to failure, but in other directions, a non-zero
margin exists until failure occurs. In such a case the probability of failure of a structure that is de-
signed based on design conditions from a highest density contour will be smaller than the target
failure probability. Consider the simple example that the structure is designed to have a smaller re-
sponse in the x′-direction than the y′-direction (where x′ and y′ represent a local coordinate system
of the structure). In this example we consider the following simple response function

r(hx′ , hy′) =
√︂
ah2x′ + bh2y′ , (5.22)
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Figure 5.14: Both, the region within an omnidirectional contour and the region within a highest density con-
tour contain probability of1−α such that a structure that is designed based on such contours will
have a probability of failure pF < α (for a deterministic response). The highest density contour
offers the potential for considerable directional optimization compared to the omnidirectional
contour, but at the cost of requiring a greater capacity in the sector between 300◦ and 330◦

where a = 1.4 and b = 5. Or expressing this in the global coordinates, x, y, which are rotated by
an angle ϕ to the local coordinate system:

r(hx, hy) =
√︂

a(hx cosϕ+ hy sinϕ)2 + b(−hx sinϕ+ hy cosϕ)2. (5.23)

Based on the distribution of Hs and Θ we are considering here, suppose the structure is designed in
such a manner that its response per unit wave height is smallest in the direction where the highest
waves occur, such that ϕ = 315◦. The 1-year response of this structure was calculated using a full
long-term analysis and using the three environmental contour methods. The results are listed in
Table 5.4. The failure surface corresponding to Expression 5.23 is shown in Figure 5.15, where the
response capacity corresponds to the 1-year response estimated using the full long-term analysis.

As expected, the IFORM and direct sampling contours underestimate the 1-year response, since
the methods assume that the failure region is convex in Hx-Hy space. Conversely, the highest den-
sity contour overestimates the 1-year response. The underestimation is approximately 3-5% for the
IFORM and direct sampling contours and the overestimation is approximately 7-16% for the highest
density contour.

Suppose that the structure is designed so that its capacity is exactly the 1-year response estimated
by a particular contour method in that, for example, the case that an IFORM contour is used the
capacity is 10.33, but if a highest density contour is used the capacity is 11.49. In this case the proba-
bility of failure for IFORM and direct sampling contours are roughly double the target probability
of failure and the probability of failure for the highest density contour is lower than the target prob-
ability of failure (roughly four times lower; Table 5.4). So, in this example, the use of IFORM or
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Figure 5.15: 1-year environmental contours for joint distribution of Hs and direction Θ, with failure surface
for structure with response given by Expression 5.23. It is assumed that the structure fails at a
response that leads to a probability of failure of pF = α.

Method 1-year response Sea state causing 1-year response (hs, θ) pF

IFORM contour 10.33 5.8 m, 91◦ 1.80 α
Direct sampling contour 10.20 8.6 m, 311◦ 2.28 α
Highest density contour 11.49 9.7 m, 311◦ 0.23 α
Full long-term analysis 10.7 - α

Table 5.4: Structural responses from different contour methods for a system whose response depends on wave
direction, with response given by Expression 5.23. pF is the probability of failure of a structure that
is designed to have a capacity of the 1-year response.

direct sampling contours would be non-conservative, while using a highest density contour would
achieve the target reliability.

The directional response function given in Expression 5.23 is not intended to represent a par-
ticular structure but is intended to illustrate the differences between the various contour methods
considered. The response of a particular structure will fall somewhere between the two limiting cases
considered above: (1) a fully optimized structure whose failure surface coincides with the environ-
mental contour that was used to design it; and (2) an omnidirectional structure whose capacity is
designed to withstand the highest response along the contour. Table 5.5 lists the failure probabilities
of these two structures when designed using each contour method. Interpreting these cases as the
boundaries of the set of reasonable direction-sensitive structures, for the joint distribution of Hs

and Θ considered here, a structure designed using an IFORM or direct sampling contour will have
a probability of failure between ca. 1.1 and 9.2 α and a structure designed using a highest density
contour will have a probability of failure between ca. 0.07 and α.
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Method pF of fully optimized structure pF of omni-
directional structure

IFORM contour 9.16 α (see Mackay and Haselsteiner [158]) 1.16 α
Direct sampling contour ca. 9 α (similar to IFORM) 1.11 α
Highest density contour α 0.07 α

Table 5.5: Structural responses from different contour methods for the two limiting cases of directionally op-
timized structures: a hypothetical structure that is fully optimized to wave direction and a structure
whose response is independent of wave direction (computed by setting a = b in Expression 5.23).
pF is the probability of failure of a structure that is designed to have a capacity of the environmental
contour method’s estimated 1-year response.

This example shows that in the derivation of directional design conditions, the highest density
contour method’s inherent conservatism is necessary to ensure that the assumed design loads are
conservative. Using IFORM and the direct sampling contour method led to non-conservative design
conditions. However, the highest density contour method led to significant conservatism (pF =
0.23α) in the somewhat optimized structure highlighting that in a practical structure, the failure
probability will likely be much smaller than α.

In other variable spaces, for example Hs − Tz there are even regions in the variable space, which
cannot lead to structural failure if a structure is designed based on a contour: If a structure is opti-
mized for the contour’s upperHs value of a givenTz value, it will not fail for anyHs at thisTz that is
below the contour’s lower boundary. To avoid over-conservatism in such cases a method to remove
such regions from the exceedance set is described in the following subsection.

5.3.3 Removing non-severe regions from the exceedance set

Sometimes it is clear that a certain region in the variable space will not lead to high loads and conse-
quently will not be part of the failure region of the response of any structure that is designed based
on an environmental contour. For example, if a (Hs, Tz)-contour is constructed, the region in the
variable space below the contour’s lower boundary, will not be part of the failure region. Therefore,
to avoid that a highest density contour leads to overly conservative design loads such regions could be
specifically treated. Let RM denote a region in the variable space whose environmental conditions
cannot lead to loads, which result in structural failure. Its environmental conditions are “non-severe”
or “mild.” Therefore, we call this region “mild region” (Figure 5.16).

Expression 5.2 and Expression 5.3 defined the design region as the highest density region that
includes 1 − α probability. Its complement is the exceedance region. To avoid having non-severe
conditions in the α-exceedance region, we define the design region RD as the union of a highest
density region RHD and a predefined mild region RM :

RD = RHD ∪RM . (5.24)

The complement of the design region, the α-exceedance region, does not contain the mild region’s
non-severe environmental conditions. To construct such a design region, first the mild region RM

is defined based on case-specific engineering judgement, which the analyst uses to define ranges of
variables. Then, a highest density region must be found, which – in union with the mild region –
contains 1− α probability:

fa = argmax
f∈[0,∞)

Pr(X ∈ RHD(f) ∪RM ) ≥ 1− α. (5.25)

95



5 Environmental contours from highest density regions

x1

x2 exceedance region
with probabilty α

design region RD 
with probabilty 1 - α

mild region RM 

HD region RHD

adjusted highest 
density environ-
mental contour

0 5 10
Zero-up-crossing period (s)

0

1

2

3

4

5

6

7

Si
gn

i�
ca

nt
 w

av
e 

he
ig

ht
 (m

)

severe condition
counted as

exceedance

non-severe
condition
counted as
exceedance

non-severe
condition

counted as
exceedance

normal highest density
environmental contour

(a) (b)

normal highest 
density environ-
mental contour

Figure 5.16: Motivation for adjusting a highest density contour. (a) In some variable spaces it is clear that the
environmental conditions in certain regions will not cause structural failure because they hold
non-severe or “mild” environmental conditions. When these regions are part of the exceedance
region that holds a probability of α, a normal highest density contour will be overly conservative.
(b) Non-severe conditions can be excluded from the exceedance region by defining a “mild re-
gion.” Then the exceedance region must spread to additional regions in the variable space to hold
a probability of α. Consequently, a contour adjusted based on a mild region holds less severe en-
vironmental conditions – in the illustrated case a lower maximum wave height – than a normal
highest density contour.

As defined in (5.24) the design region is then found by calculating the union of the highest density
region RHD and the mild region RM . The adjusted highest density environmental contour is the
boundary of the design region. Note that the density value fa of the adjusted contour will be higher
than the density value of an unadjusted highest density contour fm (compare equations 5.3 and
5.25).

Based on this definition, the variable space is divided into two regions: A design region that holds
1− α probability and an exceedance region that holds α probability. The definition will result in a
contour that is smaller in the non-mild region than a pure highest density contour such that its design
conditions will be less conservative. However, as long as a structure’s failure region is contained in
the exceedance region, N -year design conditions will lead to a conservative estimation of the N -
year response (assuming a deterministic response). For brevity, no examples with a mild region are
presented in this thesis. However, in a publication by Haselsteiner et al. [96] where the mild region
concept was introduced as a stand-alone paper, a full example is available.

5.4 Conclusions

In this chapter, we presented environmental contours, which enclose regions of highest probability
density. A highest density contour has constant probability density along its path and occupies the
smallest possible volume in the variable space for a given probability content. We computed the
contour using numerical integration based on a grid, iteratively finding the minimum probability
density which leads to a contour containing the most likely environmental states that together have
a probability of 1 − α. Defined this way an N -year environmental contour is exceeded on average
every N years anywhere along the contour. This means precisely that such an environmental state
is realized anywhere outside the environmental contour (and not in a further limited exceedance
region). Highest density contours can be computed based on any probability density function, for
example global hierarchical models, kernel density based models or joint extreme value models.
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5.4 Conclusions

We presented examples for highest density environmental contours and compared them with
IFORM and direct sampling contours. In the first example contours were constructed in the Hs-Tz

space and in the second example in theHx-Hy space. The examples highlight when a highest density
contour is an appropriate choice and when it would lead to overly conservative design conditions. In
cases where a pure highest density contour would be too conservative, the contour can be adjusted
by removing a predefined region of non-severe environmental conditions from the exceedance re-
gion. It is argued that to choose an appropriate contour method, some understanding about the
shape of a structure’s failure surface is required. Overall, the method’s simple definition based on
constant probability density and total exceedance probability provides an alternative in cases where
it is unclear whether IFORM and direct sampling contours provide conservative design conditions.
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6 Support for the design process

In this chapter, new knowledge that resulted from the studies presented in the previous chapters will
be used to propose changes to the current design process of offshore structures. Additionally, a soft-
ware implementation will be presented that shall support engineers who design or analyze offshore
structures.

6.1 Methodology to determine design loads

The new models for the long-term distribution of offshore environmental conditions and the new
method to determine joint extremes can be used to formulate an improved methodology to deter-
mine design loads. Section 2.3 presented a representation of the design process of offshore struc-
tures and identified problematic individual steps. Figure 6.1 shows how the new models and the
new method can improve the design process.

Specifically, changes to three detailed steps of the design process are proposed:

1. The long-term probability distribution ofHs shall be modeled with an exponentiated Weibull
distribution;

2. The long-term wind speed - wave height joint distribution shall be modeled as a hierarchical
model whose dependence functions are physically interpretable; and

3. A contour method shall be used that ensures that, based on its environmental loads, the struc-
ture’s estimated N -year response will be greater than the true N -year response.

Chapter 3 demonstrated how the exponentiated Weibull distribution can be used to model the
distribution of Hs at various sites. Similarly, Chapter 4 presented a hierarchical model for the joint
distribution of sea states,FHs,Tz , and a hierarchical model for wind speed - wave height states,FV,Hs .
These models could easily be combined into a three-dimensional wind-wave model, FV,Hs,Tz . Simi-
larly, the same model structure should apply to other parameters that describe a sea state’s frequency
content, such as the spectral peak period Tp or the energy period Te. Chapter 5 presented a contour
method which – under the assumption of a deterministic response – will always lead to conservative
design loads. However, sometimes its assumption of a failure region that surrounds the contour will
be overly conservative. Thus, the proposed step of using a contour method that ensures that the
estimated N -year response is conservative will be laid out in more detail in the following.

As discussed in Chapter 5, different contour methods are based on different concepts of multi-
variate exceedance. As an N -year environmental contour is used to estimate an N -year structural
response, its definition of exceedance must approximate the shape of the failure region. Because
in structural engineering the consequences of underestimating and overestimating a load are asym-
metrical, generally, the approximated failure region shall be bigger than the true failure region. In
principle, a structure’s failure region can have any shape and when defining the design basis its shape
is usually not known. Nevertheless, one can often anticipate its approximate shape. For example,
the response of a single degree of freedom systems can be conservatively approximated by assuming
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Main step Detailed step within main step Proposed practice for detailed step
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Figure 6.1: Proposed process to design an offshore structure. To determine design loads that lead to the in-
tended reliability, three changes to the common practice are proposed.
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Figure 6.2: To choose a contour method that ensures that the estimated loads and responses will be conserva-
tive, one must anticipate whether the structure’s failure region will be convex.

a linear failure surface [158] such that using an IFORM [263], a direct IFORM [44], or direct sam-
pling contour [124] is appropriate (Figure 6.2). If it is unclear, however, whether the failure region
is convex, a contour that is defined based on total exceedance probability should be used instead.
Such contour methods are Haver’s design curve method [110], the highest density method that was
developed within this thesis, the inverse second-order reliability method proposed by Chai and Leira
[27] and the inverse directional simulation contour method by Dimitrov [46]. Figure 6.2 presents a
flow chart that illustrates in which cases which type of contour should be used.

To support researchers and engineers in applying the novel models for the long-term distribution
and the proposed practice to determine joint extremes, a software implementation was developed.
The software focuses on the three detailed steps that are addressed in this thesis, is written in Python
and is publicly available under the popular, permissive MIT open-source license1. Its functionality
and architecture are described in the following chapter.

1https://opensource.org/licenses/MIT
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6 Support for the design process

6.2 Software implementation

Previously published This section is based on a publication by Haselsteiner et al. [95]. It de-
scribes a Python software package that implements the models and methods that were proposed in
previous chapters.

Publication’s full citation A. F. Haselsteiner, J. Lehmkuhl, T. Pape, K.-L. Windmeier, and
K.-D. Thoben. “ViroCon: A software to compute multivariate extremes using the environmental
contour method”. SoftwareX 9, 2019, pp. 95–101. doi: 10.1016/j.softx.2019.01.003.

6.2.1 Introduction

To support engineers in practice and in academia the models and methods developed in this the-
sis shall be provided as an easy-to-use open-source software. Such a software could also contain the
state-of-the-art methods that are currently widely used. An open-source software with broad func-
tionality to estimate the joint distributions of the offshore environmental conditions and to con-
struct environmental contours could provide significant value. Such a software currently does not
exist and if created could provide the methods and models from previous chapters as a subset of its
total functionality.

As described, the environmental contour method is widely used to define extreme environmental
loads for marine structures like offshore wind turbines, vessels and wave energy converters. Because
the environmental contour method is recommended in various engineering guidelines and standards
[47, 129, 197] one can assume that practitioners often use the method also.

Currently, obviously, no publicly available software exists that offers the novel methods and mod-
els developed in this thesis. Additionally, to the author’s knowledge, there exists no publicly available
software package that supports multiple environmental contour methods. The author is aware of
two open-source implementations of the environmental contour method: (1) a Python implemen-
tation of the inverse first-order reliability method in the WEC Design Response Toolbox [38] and
(2) a Matlab implementation of the highest density contour method developed by the author of this
thesis [90]. In addition, the author is aware of two closed-source implementations: (3) “Proban”
offers the inverse first-order reliability method [241] and (4) “Riscue,” which is free for noncom-
mercial purposes, offers the direct sampling contour method [123, 124]. All these implementations
are focused on a single contour construction method. Here, we present the software “virocon” (from
environmental contour), which allows users to define joint distributions and to compute environ-
mental contours with an importable Python package.

6.2.2 Software description

Virocon is written in Python 3. It is designed as a lightweight, importable software package that
support users, who are fluent in Python, to compute environmental contours. It can be found on
the GitHub repository https://github.com/virocon-organization/virocon. Here virocon version
2.0.2 is described, the current version during the writing of this thesis.

Software functionality

Virocon supports the so-called conditional modeling approach [18] to define joint distributions.
Thus, distributions follow the global hierarchical model structure described in Section 2.3.1. A joint
distribution can be defined by using normal, log-normal, and various forms of Weibull distributions
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6.2 Software implementation

Element Available options

Marginal distribution Normal, log-normal, 2-parameter Weibull, translated Weibull,
exponentiated Weibull

Dependence function Any parametric Python function
Predefined joint models Sea state model recommended by DNV [47, p. 77],

Wind speed - wave height model recommended by DNV [47, p. 78],
OMAE2020 sea state model (Chapter 4 and [102]),
OMAE2020 wind-wave model (Chapter 4 and [102])

Parameter estimation Maximum likelihood, least squares, weighted least squares
Contour IFORM [263], ISORM [27], direct sampling [124], highest density [100]

Table 6.1: Implemented models and methods for various elements of the environmental contour method.

for individual variables and by modeling the dependence structure between the variables with depen-
dence functions (Table 6.1). Dependence functions can be freely defined by the user such that the
dependence functions proposed in Chapter 4 and the functions that are currently recommended in
DNV’s recommended practice RP-C205 [47] can be used to define joint distributions. The joint
distribution models proposed in this thesis and the models recommended in RP-C205 are available
as predefined models in virocon.

The majority of virocon’s methods are implemented for an unlimited number of dimensions
in that 2-dimensional, 3-dimensional or higher dimensional contours can be computed. Users can
choose the methods for fitting a model to measurement data. The implemented standard procedure
is to use maximum likelihood estimation when marginal distributions are fitted and least squares
when dependence functions are fitted. Users can compute environmental contours based on the
inverse first-order reliability method (IFORM; [263]), the inverse second-order reliability method
(ISORM; [27]), the direct sampling method [124] and the highest density contour method [100].

Software evaluation

The implemented environmental contour methods were evaluated by calculating similar environ-
mental contours as those presented by Vanem and Bitner-Gregersen [251], Huseby et al. [124], and
Chai and Leira [27]. These contours are based on the joint distribution model of significant wave
height Hs and zero-up-crossing period Tz that was also used in Chapter 5. The model’s parameters
were estimated by fitting it to a dataset of sea states with a duration of 6 hours. For evaluation, we
computed environmental contours with return periods of 25 years. Consequently, the exceedance
probability was α = 1/(25×365.25×24/6) ≈ 2.74×10−5. We report the maximum values for
significant wave height and zero-up-crossing period along the contour (Table 6.2). Note that these
two values do not represent a single sea state because the maximum value of Hs occurs at a different
sea state than the maximum value of Tz .

The values calculated with virocon compare well with the results from the publications by Vanem
and Bitner-Gregersen [251], Huseby et al. [124], and Chai and Leira [27] (Table 6.2). For IFORM
and ISORM contours, the deviation between the results from the literature and from virocon was
less than 1%. For the highest density contours, the deviation to results generated with a Matlab code
that was previously published by this author [90], was much less than 1%. For the direct sampling
contour, the difference was in the order of 1%.
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6 Support for the design process

Contour method Source max. Hs (m) max. Tz (s)

IFORM Vanem and Bitner-Gregersen [251] 14.62 ca. 13.5∗
virocon 14.62 13.68

ISORM Chai and Leira [27] ca. 16.8∗ ca. 14.7∗
virocon 16.75 14.63

Direct sampling Huseby et al. [124] 14.66 13.68
virocon 14.81 13.73

Highest density Haselsteiner [90] 16.18 14.37
virocon 16.15 14.33

Table 6.2: Evaluation of the implemented environmental contour methods. Contours with a return period
of 25 years were compared (exceedance probability α ≈ 1.37 × 10−5). Shown are the maximum
values along computed and published environmental contours. IFORM = inverse first-order relia-
bility method, ISORM = inverse second-order reliability method, ∗ = estimated from a published
figure.

6.2.3 Illustrative examples

This section presents examples on how to use virocon. We will start with a simple example that illus-
trates the complete process of loading a dataset, fitting a distribution and computing an environmen-
tal contour. Then we will show one example for each of the three suggested improvements to the
design process: (1) how significant wave height can be modeled using the exponentiated Weibull dis-
tribution; (2) how the proposed joint distributions with physically interpretable dependence func-
tions can be used; and (3) how a contour method that ensures that the estimated N -year response is
conservative can be used.

Fitting a model and computing a contour by importing virocon

The package virocon is designed as a Python package that users can import to access its methods.
Listing 6.1 gives an example on how a user can import the GlobalHierarchicalModel and IFormCon-

tour classes to first fit a distribution to buoy measurements and to then compute an environmental
contour. In this example, the global hierarchical model for wind speed and wave height that was
presented in Chapter 4 was applied. By importing virocon, defining this novel model structure and
fitting it to measurement data is achieved with three lines of code (lines 9,10 and 13 in Listing 6.1).
Then, in the example, an IFORM contour is constructed based on the estimated joint distribution.
If the user concludes that another kind of contour (ISORM, direct sampling or highest density)
is more appropriate, changing the command for contour construction is sufficient (line 19 in List-
ing 6.1). The code shown in Listing 6.1 will produce the plot shown in Figure 6.3.
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6.2 Software implementation

1 import matplotlib.pyplot as plt

2 from virocon import (read_ec_benchmark_dataset, get_OMAE2020_V_Hs,

3 GlobalHierarchicalModel, IFORMContour, plot_2D_contour)

4

5 # Load wind speed - wave height hindcast dataset.
6 data = read_ec_benchmark_dataset("datasets/ec-benchmark_dataset_D.txt")

7

8 # Define the structure of the joint distribution model.
9 dist_descriptions, fit_descriptions, semantics = get_OMAE2020_V_Hs()

10 model = GlobalHierarchicalModel(dist_descriptions)

11

12 # Estimate the model's parameter values (fitting).
13 model.fit(data)

14

15 # Compute an IFORM contour with a return period of 50 years.
16 tr = 50 # Return period in years.
17 ts = 1 # Sea state duration in hours.
18 alpha = 1 / (tr * 365.25 * 24 / ts)

19 contour = IFORMContour(model, alpha)

20

21 # Plot the contour.
22 plot_2D_contour(contour, data, semantics=semantics)

23 plt.show()

Listing 6.1: Example showing how to use virocon to estimate the long-term joint distribution of wind speed
and wave height and how to compute an environmental contour.
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Figure 6.3: Plot of an IFORM environmental contour with a return period of 50 years that was produced by
running the code shown in Listing 6.1 .

105



6 Support for the design process

The exponentiated Weibull distribution

The exponentiated Weibull distribution is implemented as a class called ExponentiatedWeibullDis-

tribution. If the parameters of the distribution are known, a distribution object can be created by
calling the constructor with the parameter values, for example:

dist = ExponentiatedWeibullDistribution(alpha=2, beta=3, delta=1.5)

If the parameter values are not known, but should be estimated, an ExponentiatedWeibullDistri-

bution object can be created without specifying parameter values. Then, the method fit() can be
called to estimate the parameters based on a given dataset. The implementation uses the parameter
estimation method based on weighted least squares that is described in Chapter 3. Listing 6.2 shows
a full example on how the exponentiated Weibull distribution can be used to model wave height data.

import numpy as np

from virocon import ExponentiatedWeibullDistribution, read_ec_benchmark_dataset

# Load sea state measurements from the NDBC buoy 44007.
data = read_ec_benchmark_dataset("datasets/ec-benchmark_dataset_A_1year.txt")

hs = data["Significant wave height (m)"].to_numpy()

# Fit the exponentiated Weibull distribution to the measurements.
dist = ExponentiatedWeibullDistribution()

dist.fit(hs)

# Print the distribution object, which outputs the estimated parameters.
print(dist)

Listing 6.2: Example showing how to use virocon to fit an exponentiated Weibull distribution to wave height
measurements.

Physically interpretable dependence functions

The model structures for significant wave height and zero-up-crossing period as well as for wind
speed and significant wave height that were presented in Chapter 4 are implemented in virocon.
These model structures can be constructed – like any other global hierarchical model – by using the
implemented parametric distributions and by defining parametric dependence functions. Listing 6.3
presents an example on how the model structure for sea states is defined using virocon’s syntax and
how it is fitted to buoy data. Similarly, Listing 6.4 presents an example with the model structure for
wind speed - wave height states. Running these codes creates the plots presented in Figure 6.4.

Note that in the code listings shown joint model structures were intentionally defined explicitly.
Alternatively, we could have imported these model structures because they are already predefined by
writing:

from virocon import get_OMAE2020_Hs_Tz

dist_descriptions, fit_descriptions, semantics = get_OMAE2020_Hs_Tz()

model = GlobalHierarchicalModel(dist_descriptions)

for the sea state model and
from virocon import get_OMAE2020_V_Hs

dist_descriptions, fit_descriptions, semantics = get_OMAE2020_V_Hs()

model = GlobalHierarchicalModel(dist_descriptions)

for the wind speed - wave height model.
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import numpy as np

import matplotlib.pyplot as plt

from virocon import (read_ec_benchmark_dataset, GlobalHierarchicalModel,

ExponentiatedWeibullDistribution, LogNormalDistribution,

DependenceFunction, WidthOfIntervalSlicer, plot_2D_isodensity)

# Load sea state measurements from NDBC buoy 44007.
data = read_ec_benchmark_dataset("datasets/ec-benchmark_dataset_A.txt")

# Define the marginal distribution for Hs.
dist_description_hs = {

"distribution": ExponentiatedWeibullDistribution(),

"intervals": WidthOfIntervalSlicer(width=0.5, min_n_points=50),

}

# Define the conditional distribution for Tz.
def _asymdecrease3(x, a, b, c):

return a + b / (1 + c * x)

def _lnsquare2(x, a, b, c):

return np.log(a + b * np.sqrt(np.divide(x, 9.81)))

bounds = [(0, None), (0, None), (None, None)]

sigma_dep = DependenceFunction(_asymdecrease3, bounds=bounds)

mu_dep = DependenceFunction(_lnsquare2, bounds=bounds)

dist_description_tz = {

"distribution": LogNormalDistribution(),

"conditional_on": 0,

"parameters": {

"sigma": sigma_dep,

"mu": mu_dep,

},

}

# Create the joint model structure.
dist_descriptions = [dist_description_hs, dist_description_tz]

model = GlobalHierarchicalModel(dist_descriptions)

# Define how the model shall be fitted to data and fit it.
fit_description_hs = {"method": "wlsq", "weights": "quadratic"}

fit_descriptions = [fit_description_hs, None]

model.fit(data, fit_descriptions)

# Analyze the model's goodness of fit with an isodensity plot.
semantics = {

"names": ["Significant wave height", "Zero-up-crossing period"],

"symbols": ["H_s", "T_z"],

"units": ["m", "s"],

}

plot_2D_isodensity(model, data, semantics, swap_axis=True)

plt.show()

Listing 6.3: Example shows how to use virocon to fit the model structure proposed in Chapter 4 to sea state
data.
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import numpy as np

import matplotlib.pyplot as plt

from virocon import (read_ec_benchmark_dataset, GlobalHierarchicalModel,

ExponentiatedWeibullDistribution, DependenceFunction,

WidthOfIntervalSlicer, plot_2D_isodensity)

# Load wind speed - wave height measurements from the coastDat-2 hindcast.
data = read_ec_benchmark_dataset("datasets/ec-benchmark_dataset_D.txt")

# Define the marginal distribution for wind speed.
dist_description_v = {

"distribution": ExponentiatedWeibullDistribution(),

"intervals": WidthOfIntervalSlicer(2, min_n_points=50),

}

# Define the conditional distribution for Hs.
def _logistics4(x, a=1, b=1, c=-1, d=1):

return a + b / (1 + np.exp(c * (x - d)))

def _alpha3(x, a, b, c, d_of_x):

return (a + b * x ** c) / 2.0445 ** (1 / d_of_x(x))

logistics_bounds = [(0, None), (0, None), (None, 0), (0, None)]

alpha_bounds = [(0, None), (0, None), (None, None)]

beta_dep = DependenceFunction(_logistics4, logistics_bounds, weights=lambda x, y: y)

alpha_dep = DependenceFunction(_alpha3, alpha_bounds, d_of_x=beta_dep, weights=lambda x, y: y)

dist_description_hs = {

"distribution": ExponentiatedWeibullDistribution(f_delta=5),

"conditional_on": 0,

"parameters": {

"alpha": alpha_dep,

"beta": beta_dep,

},

}

# Create the joint model structure.
dist_descriptions = [dist_description_v, dist_description_hs]

model = GlobalHierarchicalModel(dist_descriptions)

# Define how the model shall be fitted to data and fit it.
fit_description_v = {"method": "wlsq", "weights": "quadratic"}

fit_description_hs = {"method": "wlsq", "weights": "quadratic"}

fit_descriptions = [fit_description_v, fit_description_hs]

model.fit(data, fit_descriptions)

# Analyze the model's goodness of fit with an isodensity plot.
semantics = {

"names": ["Wind speed", "Significant wave height"],

"symbols": ["V", "H_s"],

"units": [

"m s$^{-1}$",

"m",

],

}

plot_2D_isodensity(model, data, semantics)

plt.show()

Listing 6.4: Example showing how to use virocon to fit the model structure proposed in Chapter 4 to wind
speed - wave height data.
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Figure 6.4: Isodensity lines of the joint distribution models on top of the datasets that were used to fit these
models. The left and right subplots were produced by running the scripts shown in Listing 6.3
and in Listing 6.4, respectively.
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Contour methods that ensure conservative loads

Based on a given joint distribution, different contour methods can be applied. As shown in Chapter 5
these contours can differ greatly. Depending on the structural response, some contours might lead to
non-conservative or to overly conservative design loads. In virocon the four implemented contour
methods can be applied similarly to a GlobalHierarchicalModel object. The classes IFORMContour,
ISORMContour, DirectSamplingContour and HighestDensityContour are initialized with a joint distri-
bution (GlobalHierarchicalModel) and a probability of exceedance. Listing 6.5 shows an example
where, based on a joint distribution model for wind speed and wave height proposed in Chapter 4,
four different environmental contours are constructed. Figure 6.5 shows the plot that is generated if
the listing’s code is executed.

6.2.4 Impact

The purpose of virocon is to act as a design support, supporting engineers to design or analyze off-
shore structure such as wind turbines or ocean bridges. The software can be used by academics too.
virocon can help researchers pursuing research questions concerning the design and analysis of ma-
rine structures. Researchers can start with a metocean dataset and work towards a set of extreme
environmental design conditions in an easy, quick, and reproducible manner. That way researchers
can define design conditions much quicker and more reliably than if they would implement the
fitting and contour methods themselves. In addition, researchers can easily reproduce design condi-
tions that peers have used in their research if both use the standard methods that are implemented in
virocon. This way studies on marine structures under extreme environmental loads can gain repro-
ducibility and comparability.

Virocon was released in 2019. The software has since been used by researchers and practitioners.
As of autumn 2021, seventeen external persons have openly interacted with the software package.
They asked questions via emails, via the GitHub repository or “starred” the repository, which is a way
to recommend software. Eleven of these persons are associated with academic institutions and six
with companies. Users are associated with organizations in the United States, in Europe, China and
Australia. They work at universities, research centers, wind turbine manufacturers, ship building
companies and consulting companies. The author intends to continue maintaining the software
after finishing this doctoral research project.

6.2.5 Conclusions

Here, a software called virocon was presented. virocon was developed as a “design support” for engi-
neers. It implements methods to model the joint distribution of metocean data and to compute an
environmental contour based on that distribution. All new methods and models that were proposed
within this thesis are implemented in virocon. Additionally, the software provides a variety of other
models and methods that are commonly used. virocon is used by researchers and practitioners and
is maintained by the author of this thesis.
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import matplotlib.pyplot as plt

from virocon import (

read_ec_benchmark_dataset,

GlobalHierarchicalModel,

get_OMAE2020_V_Hs,

IFORMContour,

ISORMContour,

DirectSamplingContour,

HighestDensityContour,

plot_2D_contour,

)

# Load a wind speed - significant wave height dataset.
data = read_ec_benchmark_dataset("datasets/ec-benchmark_dataset_D.txt")

# Define the structure of the joint distribution model.
dist_descriptions, fit_descriptions, semantics = get_OMAE2020_V_Hs()

model = GlobalHierarchicalModel(dist_descriptions)

# Fit the model to the data (estimate the model's parameter values).
model.fit(data, fit_descriptions)

# Compute four types of contours with a return period of 50 years.
state_duration = 1 # hours
return_period = 50 # years
alpha = state_duration / (return_period * 365.25 * 24)

iform = IFORMContour(model, alpha)

isorm = ISORMContour(model, alpha)

direct_sampling = DirectSamplingContour(model, alpha)

highest_density = HighestDensityContour(model, alpha)

# Plot the contours on top of the metocean data.
fig, axs = plt.subplots(4, 1, figsize=[4, 12], sharex=True, sharey=True)

plot_2D_contour(iform, sample=data, semantics=semantics, ax=axs[0])

plot_2D_contour(isorm, sample=data, semantics=semantics, ax=axs[1])

plot_2D_contour(direct_sampling, sample=data, semantics=semantics, ax=axs[2])

plot_2D_contour(highest_density, sample=data, semantics=semantics, ax=axs[3])

titles = ["IFORM", "ISORM", "Direct sampling", "Highest density"]

for i, (ax, title) in enumerate(zip(axs, titles)):

ax.set_title(title)

if i < 3:

ax.set_xlabel("")

plt.tight_layout()

plt.show()

Listing 6.5: Example showing how to use virocon to construct different types of environmental contours.
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Figure 6.5: Different types of contours constructed with virocon. This plot was produced by running the code
shown in Listing 6.5 .
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7 Case study: Structural design of an
offshore wind turbine

Previously published This chapter is based on a publication by Haselsteiner et al. [94]. It will
present a case study on the design of an offshore wind turbine. That way the models and methods
proposed in previous chapters will be put into a practical context. In addition, the case study focuses
on the question of how accurate load estimates from contours are.

Publication’s full citation A. F. Haselsteiner, M. Frieling, E. Mackay, A. Sander, and K.-D.
Thoben. “Long-term response of an offshore turbine: How accurate are contour-based estimates?”
Renewable Energy 181, 2021, pp. 945–965. doi: 10.1016/j.renene.2021.09.077

7.1 Introduction

This chapter will present a comprehensive case study on how environmental contours are used to
design the type of offshore structure that the author is most interested in, an offshore wind turbine.
The study will compare different contour methods and will analyze the type of bias that contour-
based estimates of the structural response have. In the previous chapter, it was always assumed that
environmental conditions are independent and identically distributed. In addition, only determin-
istic responses were considered. In this chapter, none of these assumptions will be made. On the
contrary, the biases that result from these assumptions will be explored.

As described in Section 2.3, a major task in the design process of an offshore wind turbine is to
evaluate the structural integrity of a candidate design. This evaluation covers fatigue and extreme
loads. The widely used international standard IEC 61400-3-1 [129] describes the design process for
offshore wind turbines and formulates requirements for structural reliability. Concerning extreme
loads, it requires that loads that have a return period of 50 years are assessed by environmental con-
ditions that cause such loads.

To analyze a turbine’s response, simulations in the time domain are typically performed (see, for
example, [178]). These simulations are computationally expensive and thus it is important to decide
which combinations of environmental conditions should be assessed. Some environmental condi-
tions, such as air density or the type of sea state spectrum, can be kept constant over all simulations,
under the assumption that the extreme responses are more sensitive to other environmental variables
that exhibit large changes over time, such as wind speed, wave height and wave period. The num-
ber of simulations required to cover the full range of combinations of environmental conditions
expected over the lifetime of the turbine can be very large. Thus, choosing sensible combinations of
environmental variables in which to assess the turbine response is an important part of the design
process.

The environmental contour method [110, 158, 216, 263] is an approach to define such combi-
nations of environmental variables. The method provides a set of environmental conditions, which
are assumed to cause an extreme response with a given target return period. The method is acknowl-
edged to be a simplified approach, providing an estimate of the true long-term response. Using a full
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7 Case study: Structural design of an offshore wind turbine

long-term analysis (FLTA) method (see, for example, [67, 191, 217, 257]) can provide more accurate
estimates. However, FLTA methods require the turbine response to be estimated for all combina-
tions of environmental variables, and are therefore not practical for wind turbine design, due to the
high computational costs.

The authoritative design standard IEC 61400-3-1 [129] requires designers to estimate extreme re-
sponses using an environmental contour, and does not require the use of FLTA. Researchers, how-
ever, have pointed out that applying an environmental contour method to a wind turbine is chal-
lenging [117, 152, 220, 256]. The turbine’s controller actively aims to minimize loading, resulting
in non-monotonic responses for many design variables, such as bending moments on the tower and
blades. This violates one of the key assumptions underpinning the commonly used inverse first-order
reliability method (IFORM) contour approach – that the failure region is convex [263]. Moreover,
since the response is sensitive to both wind and wave conditions, reducing the design conditions to
a two-dimensional contour of wind speed and wave height introduces further uncertainty, since it
neglects the stochastic nature of other variables. Previous studies have proposed modifications to
the contour method described in IEC 61400-3-1, mainly based on theoretical arguments. However,
it is yet unclear how contour-based estimates compare to the true long-term response of an offshore
wind turbine and how different effects contribute to overall bias of the estimate. Although previ-
ous research has tackled this question [117, 152, 220, 256], the FLTA methods used in these studies
did not account for the serial correlation in environmental data, which causes an overestimation of
the response [159]. Furthermore, the research methodology of these studies did not allow to identify
the individual sources of bias of a contour-based estimate of the response: Serial correlation, the used
definition to construct a contour and a response’s short-term variability all contribute to overall bias.

Here, we aim to answer the question: How accurate are contour-based estimates of the long-term
response, and how much do different sources of bias contribute to the overall bias of a contour-based
estimate of the extreme response? Due to the research methodology applied in this study – applying
different types of full long-term analysis based on a 1000-year artificial time series of environmental
conditions – we can tackle these questions to gain new insights.

This chapter is organized as follows. In Section 7.2 we review the various FLTA methods pro-
posed for estimating the long-term extreme response of an offshore structure. We discuss the en-
vironmental contour method and the various approximations that are involved, relative to FLTA.
We also review previous studies on the environmental contour method applied to offshore wind
turbines. Section 7.3 describes the study’s research methodology and explains how we isolate the
various sources of bias introduced by the environmental contour approximation. Then, Section 7.4
presents a comparison between the true long-term response and contour-based estimates. Finally,
conclusions are presented in Section 7.5.

7.2 Estimating the long-term extreme response

To estimate the long-term extreme response of a structure to environmental loading, three things are
required: (1) an environmental dataset; (2) a description of the short-term response as a function of
environmental conditions; and (3) a method for combining the short-term response function with
the environmental data to estimate the long-term extreme response. There are various methods avail-
able for calculating the long-term extreme response. We start by briefly discussing the most accurate
types of methods for this task, various methods for “full long-term analysis” (FLTA). These methods
account for the variation of the stochastic short-term response function over the full range of envi-
ronmental conditions. In Section 7.2.1 we consider which type of FLTA method is most appropriate
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to consider as a reference to compare contour-based estimates to. In Section 7.2.2, we discuss envi-
ronmental contour methods, and the various approximations introduced relative to FLTA methods.

7.2.1 Full long-term analysis methods

The approach taken for FLTA will depend on the return period of interest and the length of environ-
mental data available. If the return period of interest is much less than the length of environmental
dataset, then the short-term response function can be evaluated for each condition in the environ-
mental dataset to obtain a time series of the response, from which the empirical quantile of interest
can be obtained. Typically, this requires the environmental dataset to be at least one order of mag-
nitude longer than the return period of interest to keep sampling uncertainties to a reasonable level
(see, for example, [162]). If the return period of interest is similar or larger than the length of envi-
ronmental record, then a way of fitting a model for the long-term distribution to extrapolate outside
the range of observations is needed. There are two options for this:

• Environment-basedmodels: A probabilistic model of the environmental data is constructed
and used to extrapolate outside the range of observations. The extrapolated environmental
conditions are then combined with the short-term response function to estimate the long-
term extreme response.

• Response-based models: The environmental data is combined with the response function
to obtain a time series of response. A probabilistic model is fitted to the response data and
used to extrapolate to the return period of interest.

The advantage of response-based methods is that the problem of predicting long-term extremes is
reduced to a univariate problem. However, the disadvantage is that a separate probabilistic analysis
needs to be conducted for each response of interest. Moreover, response-based methods make the
tacit assumption that the behavior of the response function does not change significantly outside
the range of observations. As discussed further below, this assumption may not be appropriate for
a wind turbine response, such as tower or blade bending moments. For example, at some locations,
the largest responses in short environmental records may occur in operational conditions, whereas
for longer return periods the largest responses may occur when the turbine is parked or idling. As the
form of the response function can differ in operational and parked conditions, extrapolating based
on observed responses over a short time period may lead to errors.

Environment-based extrapolation can be more complex to implement, since it typically involves a
multivariate problem, such as fitting a model for the joint distribution of wind and wave conditions.
However, it has the advantage that a single extreme value analysis of environmental conditions can be
conducted and used to estimate multiple extreme responses. Moreover, no assumptions are required
about how the response function behaves outside the range of observations, since the response func-
tion is evaluated explicitly for the extreme environmental conditions.

Another key distinction between FLTA methods is the treatment of serial correlation. Table 7.1
presents some examples of FLTA methods using environment-based and response-based extrapola-
tion, categorized by whether they assume (a) individual response peaks (“all-peaks”); (b) short-term
maxima; or (c) storm-peak values are independent. Here, “short-term maxima” refers to the max-
ima in each record of the environmental dataset, typically over time-scales of 10 minutes - 3 hours,
whereas “all-peaks” methods consider all response peaks within each record as independent (typically
there will be several hundred response cycles per hour). The correlation time-scales in the short term
response function are typically much shorter than the time-scales of the environmental records. This
means that if the environmental conditions were stationary, then it would be reasonable to assume
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Events considered independent Environment-based models Response-based models

All response peaks Nordenström [196]
Battjes [14]
Tucker [239]
Guedes Soares [82]
Naess [189]

Short-term maxima Krogstad [145]
Videiro and Moan [257]
Moriarty et al. [180]
Fogle et al. [67]
Sagrilo et al. [217]
Muliawan et al. [184]
Videiro et al. [258]
Gramstad et al. [78]

Marshall et al. [167]
Standing et al. [232]
Mazaheri and Downie [169]
Fontaine et al. [68]
Vanem et al. [253]

Storm-peak values Brown et al. [24]
Hansen et al. [89]
Mackay and Jonathan [163]

Tromans and Vanderschuren [238]
Bowers et al. [22]
Incecik et al. [127]
Mackay and Johanning [160] and
Mackay and Johanning [164]
Koohi Kheili et al. [142]

Table 7.1: Examples of full long-term analysis methods used for estimating extreme responses.

that extreme responses separated by, for example, 1 hour, are independent. However, since the size of
the response depends on the environmental condition, and time series of environmental conditions
are serially correlated, time series of extreme responses will also exhibit serial correlation. Table 7.1
also includes some examples of methods for estimating long-term extremes of individual wave or
crest heights, since these can be considered as FLTA methods, where the response function is the
short-term wave or crest height distribution. The list of works cited in Table 7.1 is far from exhaus-
tive, and there is a large volume of literature on this topic. The purpose of the table is to illustrate
the types of methods proposed and the key assumptions made.

Comparisons between all-peaks, short-term maxima and storm-peak methods have been pre-
sented in references [69, 159, 161, 217]. All-peaks and short-term maxima methods neglect the serial
correlation in environmental conditions. Mackay et al. [159] showed that this can lead to significant
positive biases in estimates of long-term extreme responses, with the bias being larger when the distri-
bution of storm-peak values has a longer tail. Nevertheless, environment-based short-term maxima
FLTA methods are widely used in ocean engineering as reference methods for estimating extreme
loads on offshore wind turbines [117, 152, 220, 256]. Moreover, they are the basis for the first- and
second-order reliability methods (FORM and SORM) [165] and inverse FORM and SORM meth-
ods [74, 76].

Based on the discussion above, storm-based methods with environment-based extrapolation are
considered most accurate for estimating the long-term extreme response of an offshore wind turbine.
This method will therefore be used as the reference method in this study.

7.2.2 Environmental contours for wind turbine design

Compared to storm-based FLTA methods, the environmental contour method introduces three sim-
plifying assumptions:

1. The maximum responses in each short-term condition are independent
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2. The N -year response occurs at an N -year environmental extreme

3. The response in each environmental condition can be evaluated at a fixed quantile of the short-
term distribution function

As discussed in the previous section, the first simplification is also applied in some commonly used
FLTA methods. The second simplification is related to the assumption about the failure surface,
made in the construction of the contour. IFORM contours [263] (and various alternative formula-
tions [44, 124], which we also refer to here as IFORM methods) are based on the assumption that a
structure’s failure surface can be linearized at the design point (the point on the failure surface with
the highest probability of occurrence). Under this assumption, multivariate extreme sets are defined
as half-plane regions, corresponding to the linearized failure surface, which contain a fixed proba-
bility level α. The environmental contour is then defined as the boundary of the region consisting
of the intersection of all such extreme sets. The alternative assumption is to assume that structural
failure occurs anywhere outside the design region (see, for example, [27, 100]). Under this assump-
tion, an environmental contour is defined as the boundary to a region containing probability 1−α.
Differences between these two types of contour are discussed in reference [158].

The third simplification is equivalent to assuming the short-term response function is determinis-
tic rather than random, with the deterministic response defined as the response at the fixed quantile
of the short-term distribution function. As the response of the structure is only evaluated in en-
vironmental conditions along the contour, this neglects the probability that the 50-year response
could be caused by a high response in less extreme environmental condition or a low response in a
more extreme condition. The effect of short-term variability is usually accounted for by evaluating
the short-term response at a quantile higher than the median value [263].

In addition to the three simplifying assumptions listed above, the accuracy of the environmental
contour method is dependent on three additional factors:

4. The reduction of a high-dimensional multivariate problem to a 2D or 3D problem

5. The accuracy of the joint probability model for the environmental variables

6. The accuracy of the response model

These factors also influence the accuracy of FLTA methods. The response of many offshore struc-
tures is dependent on multiple environmental variables (see the discussion in Section 7.3.1). How-
ever, due to the difficulty in estimating joint distributions in high dimensions and the number of
simulations required to characterize the response in a high dimensional space, it is normally assumed
that certain variables are either fixed or in fixed relation to other variables, so that only two or three
variables need to be considered.

The environmental contour method is used to establish design loads for offshore wind turbines
(see, for example, [1, 30, 117, 152, 153, 155, 220, 256]; Table 7.2). In design load case (DLC) 1.6
in IEC 61400-3-1 [129], it is required that the design is checked for combinations of wind speed
and significant wave height along a 50-year environmental contour (Figure 7.1). Compared to other
marine structures, applying a contour method to offshore wind turbine design presents particular
challenges. The environmental contour method was developed mainly for structures where the wave
height and period have a dominant influence on the response. For an offshore wind turbine both
wind and wave loads are equally important. Thus, the effect of reducing the wind turbine design
problem to a 2D contour may have a greater impact than for other structures.

The IEC standard recommends using IFORM contours for DLC 1.6. As discussed above, the
IFORM approach assumes that a structure’s failure surface can be linearized at the design point.
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Source and year Contour variables Additional deterministic variable Contour type Analyzed here

Saranyasoontorn and Manuel [220], 2006 V , Hs - 50-year IFORM -
Li et al. [152, 153], 2016, 2017 V , Hs, Tp - Modified IFORM that restricts the con-

tour to wind speeds < 25m s−1
-

Horn and Winterstein [117], 2018 V -Hs & Hs-Tp Tp and V , respectively Four 50-year IFORM contours, one per
variable space sub-population

-

Velarde et al. [256], 2019 Hs, Tp V Multiple N -year IFORM contours,
value of N determined based on V

-

Liu et al. [155], 2019 V , Hs Tp, median Tp|V,Hs is used 50-year IFORM X
IEC 61400-3-1, DLC 1.6 [128], 2019 V , Hs Tp, highest load Tp|V,Hs is used1 50-year IFORM X
Chen et al. [30], 2020 V , TI , Hs, Tp - 50-year IFORM and modified IFORM -
This work V , Hs Tp, median Tp|V,Hs is used 50-year highest density X
This work V , Hs Tp, highest load Tp|V,Hs is used 50-year highest density X
This work V , Hs, Tp - 50-year highest density X
1 Guidance on choosing values is not definitive. The standard’s text reads “The severe sea state shall include the extreme individual wave height that, in combination with the associated wave
period and the mean wind speed, has a return period of 50 years. The designer shall take account of the range of wave period, T , appropriate to each extreme wave height. In the absence of a
more sophisticated probabilistic assessment, design calculations shall assume values of wave periods within this range that results in the highest loads acting on an offshore wind turbine.” [129]

Table 7.2: Environmental contour methods proposed for analyzing offshore wind turbine reliability. V = wind speed, TI = turbulence intensity, Hs = significant wave
height, Tp = spectral peak period. Five of the listed methods are analyzed in this study.
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Figure 7.1: Design approach in IEC 61400-3-1 [129]. In design load case (DLC) 1.6, loads are evaluated at
points along a 50-year wind-wave environmental contour, for wind speeds between cut-in and cut-
out. At higher wind speeds, DLCs 6.1 and 6.2 require that the 50-year marginal significant wave
height value, Hs50, and the reference wind speed value are combined. Reference wind speeds are
based on the turbine classes defined in IEC 61400-1 [128] and must be higher than a site’s 50-year
wind speed. Circles show environmental conditions that must be considered based on the three
load cases. Note that Hs50 does not necessarily coincide with the highest point along the contour
in a 50-year IFORM contour, but it depends on the order of the variable transformation [158].

While the linearization is reasonable for many marine structures, it is problematic for many wind
turbine response variables. Modern wind turbines have control systems that optimize power output
while reducing loads. The controller is designed to extract as much power as possible from the wind
until the power output reaches the rated capacity, at the rated wind speed, which is typically around
11 to 13 m s−1. Above this wind speed, the blades are progressively pitched to reduce loads while
maintaining constant power output. Finally, at the cut-out wind speed, turbines stop producing
power and the blades are fully pitched out of the wind to minimize loads. Consequently, some re-
sponse variables such as the mudline overturning moment do not increase monotonically with wind
speed (see Figure 7.2; [10, 152, 153]).

Thus, researchers have pointed out that an IFORM contour should not be applied directly in
offshore wind turbine design (see, for example, [117, 152, 256]). Essentially, the non-monotonic
response over wind speed leads to two distinct regions of high response along the environmental
contour such that the failure surface cannot be well approximated by linearizing it at a single point
(Figure 7.2). As a solution, Li et al. [152] proposed to use a procedure that involves checking mul-
tiple environmental contours with different return periods. Horn and Winterstein [117] also ac-
knowledged the problem and proposed to divide the wind-wave variable space, with the turbine in
power production and parked mode, into four sub-populations and to construct one contour per
sub-population. Velarde et al. [256] focused on the sea state’s frequency variation and proposed an
environmental contour method to assess the wave peak period that causes the highest response.

The factors that are relevant for all marine structures have already been analyzed to a great extent
in the literature. The uncertainty of choosing a joint model has been analyzed in a recent bench-
marking study on environmental contours [92, 107]. Different definitions for contour exceedance
have been analyzed [96, 134, 158, 250]. Short-term variability has been discussed in an early paper by
Winterstein et al. [263] and since then been analyzed for various structures [8, 184]. Practical meth-
ods for accounting for short-term variability in contour methods are discussed in [45, 263]. The
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region of
high response

region of
high response

10-min mean wind speed (m s-1)

Figure 7.2: Non-monotonic response of an offshore wind turbine (top) and the associated problem when an
environmental contour is used for structural design (bottom). Top: Due to a turbine’s control
system, response variables such as the overturning moment or the fore-aft shear force are non-
monotonic (see, for example, [10, 152, 153]). Bottom: As a consequence, the failure region is non-
convex and the contour has two regions of high response. This can be problematic for IFORM
contours, which approximate failure surfaces as a hyperplanes, which is only conservative if the
failure region is convex.
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effect of serial correlation on environmental contours and estimates of long-term extreme loads has
been discussed in [44, 159]. The two challenges associated with offshore wind turbines, dealing with
the non-monotonic response and jointly dealing with wind and wave variables, are less understood.

The problem of the non-monotonic response violating the assumptions of IFORM contours can
be addressed by using a contour that is defined based on the total exceedance probability outside
the contour. For such contours a non-monotonic response does not violate any assumptions [27,
100, 158]. Non-monotonic responses are problematic for IFORM contours because they can lead
to non-convex failure regions and IFORM is only conservative for convex failures regions. Total
exceedance contours, such as highest density contours [100] and Chai and Leira’s inverse second-
order reliability method (ISORM; [27]) contours yield always conservative environmental design
conditions (provided that short-term variability is accounted for).

For addressing the relevant variables – wind speed, wave height, wave period and potentially tur-
bulence intensity (see [30]) – in a contour method, no clear solution is given in the literature. The
design standard IEC 61400-3-1 [129] suggests that a 2D wind speed - wave height contour should
be constructed, and that spectral peak period should be chosen as the period that causes the high-
est loads at the particular combination of wind speed and wave height. While this approach sounds
somewhat sensible, this combination of probabilistic and deterministic choices of variables cannot
be interpreted consistently in terms of failure probability and implied reliability. Velarde et al. [256],
however, proposed that the joint distribution of wind speed, significant wave height (Hs) and spec-
tral peak period (Tp) shall be used to construct multiple Hs − Tp contours instead. Horn and Win-
terstein [117] proposed using multiple 2D contours, both wind speed - wave height and wave height
- wave period to deal with the three-dimensional variable space. In principle, environmental contour
methods generalize to higher dimensions [100, 245, 263] such that one could also construct a single
three-dimensional wind speed, wave height, wave period surface, (which we also refer to as a “con-
tour”, for consistency). Currently, it is unclear which of these approaches is best suited to deal with
the environmental variables that are relevant to offshore wind turbine design.

Past works have analyzed the design loads on wind turbines using various contour methods [30,
152, 153, 155, 220, 256] and have proposed new contour methods based on theoretical arguments.
Where the environmental contour method for wind turbines has been compared to FLTA, the FLTA
method applied has been based on the assumption that hourly environmental extremes are indepen-
dent. As discussed in Mackay et al. [159], hourly observations are strongly serially correlated and
neglecting serial correlation can result in positive biases in estimates of long-term extreme response.
Thus, no study has yet compared response estimates from contours with the true unbiased long-term
response of an offshore wind turbine. This study aims to provide such a comparison.
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5 MW NREL
reference wind turbine

50-year hindcast
time series at the

FINO 1 site (V, Hs, Tp)

516 environmental
states (V, Hs, Tp)

arti�cial 1000-year
time series (V, Hs, Tp)

openFAST simulations

response emulator
that covers the complete

variable space

50-year environ-
mental contour

contour-based estimate
of the 50-year response

very accurate (“true“)
estimate of the 50-year

response

compare

Figure 7.3: Research methodology. This study’s goal is to compare the “true” long-term response with an
estimate based on an environmental contour. To enable this comparison a response emulator and
an artificial 1000-year time series of environmental conditions were created.

7.3 Research methodology

This study’s overall design is summarized in Figure 7.3. The goal is to compare the “true” 50-year
long-term response with an estimate based on an environmental contour. Of the factors affecting
the accuracy of the long-term response estimates, discussed in Section 7.2.2, the accuracy of the
response model or the accuracy of the statistical model for environmental conditions are not taken
under consideration, since these factors influence both contour and FLTA methods. Instead, we
focus on isolating the influence of the approximations made in the environmental contour method
relative to FLTA.

We use the 5 MW NREL reference wind turbine [137] and consider the FINO 1 research plat-
form site in the German North Sea [65]. Because performing dynamic multiphysics simulations of a
wind turbine with a state-of-the-art code such as openFAST requires CPU computation time in the
same or a higher order of magnitude as the simulation time, simulating times series that cover mul-
tiple years is impractical. Thus, we created a response emulator based on 516 1-hour multiphysics
simulations. This response emulator is a parametric statistical model that outputs a random 1-hour
maximum response for a given environmental condition. Additionally, to estimate the 50-year re-
sponse accurately, a much longer time series than measurements or hindcasts offer is required. Con-
sequently, we created an artificial 1000-year time series. This time series and the response emulator
were used to accurately estimate the 50-year response. Finally, we also used the response emulator
and the empirical joint distribution derived from the artificial time series to calculate contour-based
estimates of the 50-year response. The methodology is described in detail in the following subsec-
tions.
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7.3 Research methodology

7.3.1 Environmental conditions

To enable a comparison between a very accurate estimate, (which we refer to as the “true” long-term
response), and estimates from contour methods, we needed to consider a time series that is several
orders of magnitude longer than the return period of interest. Typical site-specific datasets of wind
speed and wave height, however, only cover periods of the order of 10 - 100 years. To circumvent
this problem, here, we generated an artificial time series, based on the statistical characteristics of a
50-year dataset from the coastDat-2 hindcast [80, 81] at the location of the FINO 1 research platform
in the German North Sea (Figure 7.4). This 50-year dataset was also used in a recent benchmarking
exercise on environmental contours [92].

The artificial time series was created using a block resampling method [163]. The method involves
three steps. In the first step, the time series is divided into non-overlapping blocks, where the peaks of
each variable of each block can be considered approximately independent from adjacent blocks (in a
similar manner to a peaks-over-threshold analysis). In the second step, a joint distribution model is
fitted to the block-peak values. In the third step, random vectors of peak values are simulated from
the fitted model and measured blocks with peak values closely-matching the simulated values are se-
lected at random and rescaled so that the resampled and simulated peak values coincide. The artificial
time series is composed of the resampled and rescaled blocks from the original time series. The idea is
that, provided that the measured blocks are only scaled by a small amount, the resampled time series
should be physically realistic and closely match both the temporal and joint dependence structure
of the measured time series. The resampled time series is not continuous at the block boundaries.
However, the blocks are defined so that the peak values do not occur near the block boundaries,
so that the temporal correlation structure around the peak values is preserved. Further details of
the procedure used to generate the artificial time series are presented in the research article that this
chapter is based on [94].

The artificial time series covers 1000 years. The model comprised a joint distribution for block
maxima of wind speed,V , significant wave height,Hs, and wave steepness,S = 2πHs/gT

2
p (where

g is the acceleration due to gravity). Comparisons of measured and simulated values of these variables
are shown in Figure 7.4.

In the present work, we have only considered the variation of wind speed, significant wave height
and wave steepness. The environmental variables that were assumed to remain constant over time
are listed in Table 7.3.
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7 Case study: Structural design of an offshore wind turbine

Property Value

Air density 1.225 kg m−3

Wind speed profile V (z) = Vhub(z/zhub)
0.14

Turbulence intensity During power production: ca. 14% - 50% (wind tur-
bine class B; IEC 61400-1 normal turbulence model)
Above 25 m s−1: 11% (IEC 61400-1 normal turbu-
lence model)

Water density 1025 kg m−3

Wave spectrum JONSWAP spectrum with γ = 3.3
Wave directional spread 0 deg
Wave mean direction 0 deg
Wind mean direction 0 deg
Current velocity 0 m s−1

Water depth 30 m

Table 7.3: Environmental variables that are constant over all simulations.
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(d) Randomly sampled artificial dataset.

Figure 7.4: Metocean dataset. (a - b) A 50-year period of the coastDat-2 dataset [81] at the location of the FINO 1 research platform was used to build a statistical model. The
three variables considered were 1-hour mean wind speed at hub height, 1-hour significant wave height and 1-hour spectral peak period. (c-d) An artificial dataset
was created that spans 1000 years (the first 50 years are shown here), with statistical characteristics matching the coastDat-2 dataset. The dataset was created
using a block-resampling method, where block-peak values (shown as circles) were drawn randomly from a joint model and measured blocks are resampled and
rescaled so that the peak values match the simulated values.
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7 Case study: Structural design of an offshore wind turbine

7.3.2 Wind turbine response

Turbine properties

We used the 5 MW NREL reference wind turbine [137] with the monopile design that was proposed
by Bachynski et al. [9]. The 5 MW NREL reference turbine is widely used in academic studies (see,
for example, [20, 48, 49, 84, 210, 273]). Figure 7.5 shows the turbine’s main dimensions, the three
variables that were varied among simulations – wind speed, significant wave height, and spectral peak
period – and the response variables that were analyzed, the bending moment at 10 m water depth
and the mudline overturning moment. The turbine is controlled via a variable-speed-variable-pitch
scheme, with a cut-in wind speed of 3 m s−1 and a cut-out wind speed of 25 m s−1.

Multiphysics simulations

We performed aero-hydro-servo-elastic simulations using the code openFAST ([193], version 2.2.0).
OpenFAST is a multiphysics simulation code that allows the coupled simulation of aerodynamics
(“aero”), hydrodynamics (“hydro”), structural dynamics (“elasto”) and a controller (“servo”). The
code consists of several software modules that deal with different types of physics. The software
module AeroDyn [179] handles the aerodynamics and is based on the principle of actuator lines. We
used its implementation of the blade element momentum method. The software module HydroDyn
handles the hydrodynamics. We used its implementation of strip theory that is based on Morison’s
equation and linear wave theory to simulate wave loads. Structural mechanics were handled by the
modules ElastoDyn (rotor blades, tower and transition piece) and SubDyn ([41]; monopile).

Simulations were run for a total duration of 1 hour and 30 s, however, the first 30 s were discarded
because they were only intended to initialize the simulation to a dynamic state. The time step size
was 12.5 ms. We performed simulations which covered the range of observed wind speeds, wave
heights and wave periods (Figure 7.6). Thus, simulations were performed for wind speeds between
1 and 45 m s−1, significant wave heights between 0 and 15 m and spectral peak periods between ca.
3 s and 18 s. The variable space was evaluated by performing simulations at four different Tp values
per V −Hs combination. These four “slices” of Tp through the 3-dimensional variable space were
defined as:

tp1 =

√︄
2πhs

g · 0.066
,

tp2 =

√︄
2πhs
g · 0.04

,

tp3 = tp2 +
8

1 +
√
hs + 2

,

tp4 = tp2 +
20

1 +
√
hs + 2

,

(7.1)

where g = 9.81m s−2 is the acceleration due to gravity. In total 516 simulations were performed to
cover the variable space.

Statistical response emulator

We built a response emulator that returns a random 1-hour maximum moment at 30 m water depth
for a given combination of 1-hour mean wind speed v, significant wave height hs and peak period
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Figure 7.5: 5 MW NREL reference wind turbine [137] with the monopile foundation presented by Bachynski
et al. [9]. In this study, we varied the three environmental conditions 1-hour mean wind speed
V , significant wave height Hs, and spectral peak period Tp. For simplicity, only two response
variables, the mudline overturning moment R and the bending moment at 10 m water depth B,
were analyzed.
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Figure 7.6: Environmental conditions at which multiphysics simulations were performed and which were
used to build the statistical response emulator (red diamonds). A total of 516 different environ-
mental conditions were evaluated (129 wind speed - wave height combinations and for each wind
- wave combination four different spectral peak period values; tp1, tp2, tp3, tp4). Black dots show
the environmental conditions within the first 50 years of the dataset for the FINO 1 site.

tp. In principle, such a response emulator can be defined in various ways. Here, we chose to define
the emulator as a parametric distribution of the short-term response maxima such that a random 1-
hour maximum can be drawn by calling the distribution’s inverse cumulative distribution function.
Let F1h(r|v, hs, tp) denote the conditional distribution function of the 1-hour maximum mudline
overturning moment. Thus the 1-hour maximum overturning moment is a random variable R and
its realization is denoted r. Then the response emulator is the inverse distribution function:

F−1
1h (p|v, hs, tp), (7.2)

which can be called with a value for p ∈ [0, 1] to evaluate a given quantile of interest. To draw a
random 1-hour response realization, we simulated uniformly distributed random variablesp ∈ [0, 1]
and then calculated F−1

1h (p|v, hs, tp).
The distribution of short-term response maxima can be estimated using various techniques, such

as block-maxima, peaks-over-threshold, or up-crossing rate methods [187, 188, 207, 264]. Here, we
used a block-maxima method, with F1h modeled using the generalized extreme value (GEV) distri-
bution. The location, scale, and shape parameters, (µ, σ, ξ), were modeled as parametric functions
of wind speed, wave height and wave period. The cumulative distribution function for the 1-hour
maximum response is then given by

F1h(r|v, hs, tp) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

(︃
− exp

(︃
−r − µ

σ

)︃)︃
, ξ = 0,

exp

(︄
−
(︃
1 + ξ

r − µ

σ

)︃−1/ξ

+

)︄
, ξ ̸= 0,

(7.3)

where (·)+ = max{·, 0}, and, for simplicity, the dependence of the parameters (µ, σ, ξ) on
(v, hs, tp) has not been written explicitly. Various methods can be used to estimate the models for
(µ, σ, ξ) as functions of (v, hs, tp), such as radial basis function models or Gaussian process regres-
sion (Kriging). In this work we have opted to use simple parametric models. These models may not
provide the optimal fit, but do allow the results of the study to easily be replicated. As described
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further below, the response emulator was found to be sufficiently representative for the purpose of
the study. The fitted functions for µ, σ and ξ are given in Section A.3 and contain a total of 33
parameters.

The process to establish the response emulator involved the following steps:

1. 1-hour simulations were conducted across the wind speed, wave height, peak period variable
space.

2. Each 1-hour simulation was divided into 1-minute blocks (Figure 7.7).

3. GEV distributions were fitted to the block maxima in each simulation.

4. The continuous dependence functions µ(v, hs, tp), σ(v, hs, tp) and ξ(v, hs) were fitted
based on the various estimates of the parameters at discrete points of the variable space.

5. The 1-min maxima distribution was transformed into a 1-hour maxima distribution:
F1h(r) = [F1min(r)]

60.

Fogle et al. [67] found that the maxima of 40-60 s blocks can be considered independent in wind
turbine load responses. While we did not test for independence here, in some time series the 1-minute
maxima appears to be independent while other time series have some low-frequency modes that
suggest that 1-minute maxima are not truly independent.

The parameter values of the GEV vary across the variable space, with discontinuities at the cut-
out wind speed (figures are shown in Section A.3). While the estimates of the location and scale
parameters vary relatively smoothly over the discrete simulation points, the shape parameter is more
erratic, due to sampling variability.

The parametric response emulator captures important characteristics of the multiphysics simula-
tions. This can be seen by comparing the GEV’s parameter values over the variable space and by com-
paring realized 1-hour responses within the multiphysics simulations with random samples drawn
from the emulator (Figures 7.8, 7.9, 7.10). At calm sea (hs = 0m), the multiphysics simulations
describe a characteristic curve when the realized 1-hour maximum overturning moment is plotted
over wind speed (Figure 7.8):

• The response increases roughly linearly until the rated wind speed of 11.4 m s−1;

• then it increases slower and with reduced short-term variability;

• at ca. 17 m s−1 the response starts to decrease with increasing wind speed, with high short-
term variability; and

• finally, starting at 25 m s−1, when the turbine switches into parked mode, the response drops
and then increases quadratically with wind speed.

The response emulator reproduces these features of the response curve.
Overall, the response emulator for the overturning moment at 30 m water depth showed good

agreement with the realizations of the multiphysics simulation. Differences were mostly below 20%
(Figure 7.9) and scatter plots suggested that there was no systematic over- or under-estimation from
the emulator (Figure 7.10).

129



7
Casestudy:Structuraldesign

ofan
offshorewind

turbine

0 10 20 30 40 50 60
0

10

20

30

40

O
ve

rtu
rn

in
g 

m
om

en
t (

M
N

m
)

 v = 3 m s-1

20 25 30 35 40
Quantiles of GEVD (MNm)

15

20

25

30

35

40

45

Q
ua

nt
ile

s 
of

 s
am

pl
e 

(M
N

m
)

0 10 20 30 40 50 60
0

20

40

60

80

100

120

O
ve

rtu
rn

in
g 

m
om

en
t (

M
N

m
)

 v = 9 m s-1

40 60 80 100 120
Quantiles of GEVD (MNm)

40

50

60

70

80

90

100

110

Q
ua

nt
ile

s 
of

 s
am

pl
e 

(M
N

m
)

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

O
ve

rtu
rn

in
g 

m
om

en
t (

M
N

m
)

 v = 17 m s-1

60 80 100 120 140
Quantiles of GEVD (MNm)

60

80

100

120

140

Q
ua

nt
ile

s 
of

 s
am

pl
e 

(M
N

m
)

0 10 20 30 40 50 60
Time (min)

0

10

20

30

40

50

O
ve

rtu
rn

in
g 

m
om

en
t (

M
N

m
)

 v = 26 m s-1

20 30 40 50
Quantiles of GEVD (MNm)

20

25

30

35

40

45

50

Q
ua

nt
ile

s 
of

 s
am

pl
e 

(M
N

m
)

Figure 7.7: Time series of hourly simulations at wind speeds of 3, 9, 17 and 26 m s−1 (from top to bottom) at a sea state of hs = 1m and tp = 6.51 s. Red crosses represent
the maxima of 1-minute blocks. In the right panels quantile-quantile plots of the generalized extreme value distributions (GEVDs) that were fitted to the block
maxima are shown.
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In addition to the 30 m response emulator, we built an emulator for the bending moment at 10 m
water depth. At 10 m water depth, the wind’s relative contribution is higher and the wave’s relative
contribution lower than at 30 m water depth. Thus, annual maxima of the 10 m moment can oc-
cur at different environmental conditions than annual maxima of the 30 m moment. The response
emulator for the 10 m moment was defined based upon the 30 m emulator, assuming that wind and
wave can be approximated as point forces at known heights (further details are given in Section A.3).
The median responses of both emulators are visualized in Figure 7.11.

7.3.3 Isolating the effect of approximations in contour methods

To isolate the effects of each approximation introduced in the environmental contour method, four
quantities were derived from the 1000-year time series, corresponding to the 50-year responses esti-
mated under various assumptions. For each 1-hour time step of the 1000-year series, both a stochas-
tic and deterministic response was generated. The deterministic responses were calculated by always
using the median short-term response instead of a random quantile. The 50-year responses for the
stochastic and deterministic time series were then calculated either from the annual maxima, or from
all hourly values, under the assumption of independence. In both cases, the empirical distribution
derived from either the annual maxima or hourly values is used to calculate return values. The vari-
ous return value estimates are denoted:

• xs50: calculated from annual maxima of the time series of stochastic responses

• xd50: calculated from annual maxima of the time series of deterministic responses

• x̃s50: calculated from all hourly-maximum stochastic responses, under the assumption of in-
dependence

• x̃d50: calculated from all hourly values of deterministic responses, under the assumption of
independence

Under the assumption that the artificial time series and the response emulator represent reality, the
estimator xs50 will be unbiased. It will have some degree of sampling uncertainty though as both,
blocks of the artificial time series and hourly maximum responses given an environmental condition
are sampled from distributions. For simplicity, we call xs50 the “true response”.

By comparing xs50 and x̃s50 (or xd50 and x̃d50), we can assess the impact of neglecting serial
correlation in the metocean conditions. By comparing xs50 and xd50 (or x̃s50 and x̃d50), we can
assess the impact of assuming a deterministic response. The impact of assuming a linearized failure
surface and reducing the design problem to a 2D contour is assessed by comparing various contour-
based response estimators: Two based on 2D IFORM contours [263], two based on 2D highest
density contours [100] and one based on a 3D highest density contour. We denote these estimators
as xc50. The 2D contours were calculated from wind speed - wave height joint distributions and a
fixed relationship for the peak period (or, equivalently, wave steepness) given a wind speed and wave
height is assumed. For the 2D contours, the peak period associated with each design condition was
calculated based on the observations with the highest 1% of significant wave height values for a given
wind speed interval (Figure 7.12). Two different methods were used to establish a relation between
steepness and wind speed for large values of significant wave height. In one case, the median steepness
for the high Hs records was calculated as a function of wind speed. The empirical median values,
smedian, were then approximated using the function

smedian = 0.012 +
0.0021

1 + exp[−0.3(v − 10)]
, (7.4)

131



7 Case study: Structural design of an offshore wind turbine

1-hour wind speed (m s-1)

M
ax

 1
-h

ou
r o

ve
rtu

rn
in

g 
m

om
en

t (
M

N
m

)

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

140
Multiphysics simulation,  hs = 0 m

Simulation seed (n = 4)
0.0529 * v2

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

140
Statistical response emulator,  hs = 0 m

Random realization (n = 20)
0.0529 * v2

Figure 7.8: Responses at different wind speeds during calm sea (hs = 0m). Maxima from multiphyiscs simu-
lations (top) and the response emulator (bottom) showed good qualitiative agreement. The mud-
line overturning moment peaked during power production, but this peak would be exceeded at
much higher wind speed during parked mode (ca. 45 - 50 m s−1). In parked mode the wind tur-
bine did not vary its pitch angle anymore such that the overturning moment increases – like the
drag force – with the square of the wind speed.
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Figure 7.9: Response across the wind speed - wave height variable space. Difference between the response from
the multiphyiscs simulation and the emulator’s median response predictions were below 20% for
most environmental conditions.
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Figure 7.10: Comparison between multiphysics simulations and the response emulator. Top: Median 1-hour
maximum from emulator versus realized maximum in the multiphysics simulation. Bottom: Me-
dian 1-hour maximum from emulator versus median 1-hour maximum from the locally fitted
generalized extreme value (GEV) distribution. Dashed lines represent perfect agreement between
emulator and simulation.
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Figure 7.11: Median response of the two statistical response emulators at tp = tp2 =
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the 10 m moment generally drops while the 30 m moment drops at low wave heights, but jumps
at high wave heights.
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7.4 Results and discussion

where steepness is calculated based on peak spectral period, tp, and v is in m s−1. In the other case,
based on a visual inspection of the data, the maximum steepness at a given wind speed and large Hs

was approximated as

smax =

{︄
0.021 + 0.0017v if v ≤ 19m s−1

0.054, otherwise.
(7.5)

Since the turbine’s eigenperiod is around 3 s, for a given value of significant wave height and wind
speed, sea states with higher steepness led to larger loads. The contour estimates using smax, will
therefore be more conservative than those using smedian. However, since the highest values of steep-
ness at this location tend to occur for lower values of Hs at a given wind speed (see Figure 7.4), as-
suming that the highest loads occur along the environmental contour may not be conservative, since
a lower value of Hs with a higher value of steepness may lead to larger loads in this case. This effect
cannot be represented using the 2D contours, but can be accounted for using a 3D contour. For the
3D highest density contour, a deterministic relationship forTp|V,Hs is not required, as the relation
between the three variables is already specified by the contour.

The underlying joint distribution to calculate the contours was the empirical distribution, de-
rived from an artificial time series with a length of ca. 2.5 million years, generated using the same
method used to generate the 1000-year times series. For all five contours, the estimate for the 50-year
extreme moment was taken as the point along the contour that caused the highest response (using
the response emulator).

7.4 Results and discussion

Figure 7.13 shows response time series for the 10 m and 30 m moment. In the top two panels the
response is assumed to be deterministic (this is achieved by evaluating the response emulator at the
0.5 quantile at every time step) while in the bottom two panels the response is stochastic. In all cases
the response time series has a roughly linear relationship with the wind speed time series if the wind
speed is below ca. 15 m s−1. As expected, the moment at 30 m water depth is higher than the moment
at 10 m water depth.

While short periods of the four response time series showed similarities (Figure 7.13), the annual
maxima of the complete 1000-year time series have different characteristics (Figure 7.14): Annual
maxima of the 30 m moment are higher than annual maxima of the 10 m moment and have a greater
variability. The 10 m moment annual maxima vary between ca. 110 and 130 MNm (deterministic)
and ca. 130 and 180 MNm (stochastic), the 30 m moment annual maxima vary between 150 and
300 MNm (deterministic) and 180 and 420 MNm (stochastic). This difference can be explained
by the type of wind speed - wave height environmental conditions that cause the annual maxima.
Figure 7.15 shows the combinations of wind speed and significant wave height leading to the annual
maximum bending moment at 10 m and 30 m, with the color denoting the corresponding size of the
annual maximum value. The 10 m moment extremes are mostly caused by environmental conditions
of medium wind speeds (13 - 20 m s−1) during power production, but the largest values of the annual
maximum 30 m moment are mostly caused by high wind speed - high wave height events when the
turbine is shut down. The 50-year responses for the four considered cases are listed in Table 7.4, as
114 MNn (10 m, deterministic), 252 MNm (30 m, deterministic), 158 MNm (10 m, stochastic) and
305 MNm (30 m, stochastic).

The different response characteristics also influence the accuracy of contour-based estimates.
Lines of constant response of the 30 m moment show that there is only one region of high response
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(a) Two-dimensional contours.
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(b) Three-dimensional contour.

Figure 7.12: 50-year environmental contours. The contours are based on the empirical distribution of an ar-
tificial time series with a length of ca. 2.5 million years. Design conditions are plotted as circles.
(a) Two-dimensional IFORM and highest density contours. Two types of deterministic relation-
ships for steepness conditional on wind speed were considered such that four different 2D con-
tours were constructed. In the first type steepness was modeled as the median steepness of the
highest 1% wave heights and in the second type it was modeled as the maximum steepness of the
highest 1% of wave heights (right panel). (b) Slices of the three-dimensional highest density con-
tour. A threshold of 40 data points per cell defines the constant density contour.
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discussionFigure 7.13: Snippets of the hourly response time series simulated with the statistical response emulator for the moment at 10 m water depth and at 30 m water depth. Top

two panels: Deterministic response (the emulator was evaluated at the 0.5 quantile). Bottom two panels: Stochastic response (the emulator was evaluated at
random quantiles).
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Figure 7.14: Full 1000-year response time series (moment at 10 m water depth and at 30 m water depth). Top two panels: Deterministic response (the emulator was evaluated
at the 0.5 quantile). Bottom two panels: Stochastic response (the emulator was evaluated at random quantiles). Red crosses represent annual maxima.
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Figure 7.15: Top row: Combinations of wind speed and significant wave height where the annual maximum bending moments occurred in the 1000-year time series. Color
of points indicates corresponding annual maximum load. Bottom row: Exceedance probability of annual maximum moment.
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7 Case study: Structural design of an offshore wind turbine

Method b50 (MNm) b∗50 (-) r50 (MNm) r∗50 (-)

Annual maxima of 1000-year time series with a
stochastic short-term response (“true”), xs50

158 1.000 305 1.000

Annual maxima of 1000-year time series with a de-
terministic short-term response, xd50

114 0.721 252 0.827

Continuous 1000-year response time series with a
stochastic short term response, x̃s50

158 1.000 312 1.025

Continuous 1000-year response time series with a
deterministic short-term response, x̃d50

119 0.752 276 0.905

2D IFORM contour with median steepness 114 0.722 281 0.921
2D IFORM contour with high steepness 119 0.750 292 0.957
2D HD contour with median steepness 133 0.843 329 1.080
2D HD contour with high steepness 137 0.867 339 1.111
3D HD contour 141 0.889 358 1.174

Table 7.4: Comparison of estimates for the 50-year extreme moment at 10 and 30 m water depth (b50 and r50,
respectively). The contour-based estimates were calculated by evaluating the short-term response
at the 0.5 quantile. b∗50 and r∗50 are the estimated 50-year moments normalized by the true 50-year
moments at 10 and 30 m water depth, respectively.

along the IFORM contour (Figure 7.16). For the 10 m response, however, there are two regions
of high response along the contour and response lines at the level of the contour-based estimate are
strongly non-convex. This suggests that contour-based estimates will be less conservative for the 10 m
moment than they are for the 30 m moment. In particular, for IFORM contours, the assumption
of a linearized failure surface is justified for the 30 m moment but is violated for the 10 m moment.

Figure 7.17 shows the contours and the response values at their design conditions. When the
short-term response was evaluated at the 0.5 quantile – as prescribed in the wind turbine design
standard IEC 61400-3-1 [129] – all contour-based estimates of the 50-year 10 m moment, b50, were
lower than the true b50 value. For the 30 m moment, the two IFORM-based estimates were lower
than the true r50 value while the highest density-based estimates were higher than the true value.
While not prescribed in IEC’s standard [129], for other marine structures, it is common practice
to account for the response’ short-term variability by evaluating the contour’s design at a response
quantile higher than 0.5. Which quantile needs to be chosen to account for short-term variability
depends upon response characteristics of the application of interest. For example, Baarholm et al.
[8] found that for the natural gas platform “troll A” the required quantile varied for the considered
response variables, but was about 0.8.

Here, we found that for the 50-year 10 m moment, b50, IFORM contours needed to be evaluated
at the 0.99 quantile, 2D highest density contours at the 0.9 quantile and 3D highest density contours
at the 0.8 quantile (Figure 7.18). Note that this compensation did not only account for the effect of
the response’s short-term variability, but also balanced the effects of serial correlation and of con-
tour construction: Contours were derived from the joint distribution of all 1-hour environmental
conditions. Some of the environmental conditions that occured at the tails of the joint distribution,
however, were serially correlated, causing the contour to artificially inflate. Derbanne and Haute-
clocque [44] explain this effect and show de-clustering can be used to eliminate this effect. Contour
construction is another source of bias: While IFORM contours use a non-conservative definition of
exceedance for offshore wind turbines (due to the linearization of the failure surface), highest den-
sity contours use an overly conservative definition of exceedance (some of the data points that are
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Figure 7.16: Lines of constant response and IFORM contour. The extreme response of the 30 m water depth
moment is dominated by high wind speed - high wave height events while the extreme response of
the 10 m water depth moment is influenced by both, mid wind speed and high wind speed events.
The IFORM contour’s assumption of a single linearized failure surface roughly holds at 30 m
water depth, but is violated at 10 m water depth because the failure surface has two “regions of
high response” along the environmental contour. Spectral peak period was calculated according
to Expression 7.4.

counted as exceedance do not lead to failure-relevant loads). The effect of the type of contour on the
conservatism is discussed in [96, 158].

The effect of the contour type (IFORM, highest density, steepness assumption) can be better
analyzed if short-term variability is “turned off.” Thus, we can compare contour-based estimates
with FLTA based estimates where the short-term response is deterministic. As contours are derived
from the serially correlated hourly data, an appropriate comparison is the 50-year quantile from
the continuous 1000-year deterministic response time series. This quantile is also affected by se-
rial correlation, but not by the response’s short-term variability. For the 10 m moment, this estimate
is 119 MNm. When the median steepness value is used, the IFORM-based estimate is 114 MNm
and the HD-based estimate is 133 MNm (Table 7.4). Thus, as expected, IFORM’s definition of ex-
ceedance is non-conservative while HD’s definition of exceedance is overly conservative. This com-
parison also suggests that using the median steepness of the highest 1% of waves at a given wind speed
is conservative enough because when the maximum steepness is used the IFORM-based estimate is
119 MNm, which is the same as the estimate from the 1000-year time series. We know, however, that
by IFORM’s contour construction definition, we should get a response less than 119 MNm. Thus,
in the maximum steepness case IFORM’s non-conservative exceedance definition is balanced by the
overly conservative assumption of a too high steepness value and consequently a too low spectral
peak period value.

The different types of biases are visualized in Figure 7.19. They comprise bias due to contour
construction, due to serial correlation and due to short-term variability. The analysis shows that
bias due to contour construction can lead to an under- or overestimation of the response. The bias
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7.4 Results and discussion

due to serial correlation always leads to an overestimation and the bias due to neglecting short-term
variability always leads to an underestimation. Consequently, overall bias can be positive or negative.

The biggest source of bias in the estimate of b50 is due to the response’s short-term variability.
Because contour design conditions are evaluated at a single short-term response quantile, they have
a negative bias due to ignoring short-term variability. In principle, total bias – the sum of contour
construction, serial correlation and short-term variability bias – can be compensated by evaluating
the contour’s design condition at a higher quantile of the short-term response. However, there is no
theoretical support for compensating bias due to contour construction and due to serial correlation
by evaluating the short-term response at a higher quantile. If the bias effect is taken into account,
it would be more logical to compensate the biases of contour construction and serial correlation by
inflating or deflating the contour. An IFORM contour is too small if the failure surface is non-convex
(as is the case here) and a contour based on serially correlated environmental data is too large.

The results of this study are sensitive to the response and to the environment. While we aimed to
build a high-quality response emulator and a high-quality statistical model to produce artificial time
series, two aspects might deviate from reality: The response emulator’s GEV distribution’s shape
parameter is positive at medium wind speeds of about 18 m s−1, which means that the distribution
does not have an upper bound. In reality, there is an upper bound. Thus, the estimated distribution
has some bias in the tail. By performing multiphysics simulations longer than 1 hour and possibly
using the maxima from blocks longer than 1 minute one could estimate the tail better. Another pos-
sible bias is our model for the distribution of significant wave height. Given that the considered site
has a water depth of 30 m, the model might overestimate the occurrence of very high wave heights.
Both aspects are important because for some response variables the extremes occur at the mid-wind
speed region and for other variables they occur at the high wind speed - high wave height region. If
the response at mid wind speeds is different or the environment at high wind speeds, the differences
between the true 50-year response and the contour-based estimate could change.

Similarly, that means that the results are sensitive if a different response variable is analyzed that
we did not consider here or if a different offshore site is analyzed. Some results however, likely hold
for other response variables and other offshore sites:

1. Due to a wind turbine’s controller there will always be response variables where the con-
tour has two regions of high response in the wind speed - significant wave height vari-
able space, which implies a non-convex failure surface. Therefore, an IFORM contour is
a non-conservative way to construct a contour. To avoid this source of non-conservatism,
an ISORM or highest density contour can be constructed instead. However, if spectral
peak period is varied deterministically with Hs and V , this relationship can offset the non-
conservatism of the IFORM contour.

2. Serial correlation leads to an overestimation of the contour-based estimate. In this study the
effect was up to 8%.

3. The response short-term variability leads to an underestimation of the contour-based esti-
mate. In this study the effect was between 17 an 28%.

4. If there is a clear understanding, which spectral peak periods cause an unfavorable response,
a 2D wind speed - wave height contour can be used instead of a 3D contour, together with
a typical unfavorable Tp value. Although such probabilistic-deterministic variable combina-
tions are theoretically fuzzy, they greatly reduce the number of design conditions along the
“contour” that need to be evaluated. If there is no clear understanding about which Tp values
are unfavorable, a 3D “contour” should be constructed.
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Figure 7.18: 10 m moment at the contours’ design conditions normalized by the true 50-year response. The
design conditions are evaluated at various quantiles of the short-term response. In the journal
publication that this section is based on [94], panels of the 0.8 quantile are shown too.

Future research on the long-term response of offshore wind turbines could explore other response
variables and other sites. It would be interesting to explore the upper bound of bias for contour-based
estimates. Additionally, future research could explore how more environmental variables could be
considered during the estimation of the long-term response. Implicitly, we assumed in this study that
only wind speed, significant wave height, and spectral peak period change over time. This means that
we assumed that wind and wave always come from the same direction and that sea level, current,
turbulence structure, spectrum type and many other variables are constant. At the moment, it is
unclear how big the influence of this assumption is. Other variables could be incorporated into
either FLTA or contour-based estimates. However, estimating joint distributions and conducting
enough response simulations, becomes problematic as the number of variables increases.

7.5 Conclusions

In this work, we analyzed how well the long-term extreme response of an offshore wind turbine
can be estimated based on environmental contours. The question was motivated by the fact that au-
thoritative design standards recommend the use of environmental contours for wind turbine design,
however, it was unclear how these contour-based estimates compare to the true long-term response.
Offshore wind turbine design is particularly concerned with the 50-year extreme response. As es-
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contour construction serial correlation short-term variability required compensation
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Figure 7.19: Sources of bias for the contour-based estimates. Contour construction bias can be negative or
positive, however, serial correlation bias is always positive and short-term variability bias is always
negative. The contour’s design conditions were evaluated at the 0.5 quantile of the short-term
response. Contour construction bias: xc50 − x̃d50, serial correlation bias: x̃d50 − xd50, short-
term variability bias: xd50 − xs50, overall required compensation: xs50 − xc50. Definitions for
these variables are given in Section 7.3.3.
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7 Case study: Structural design of an offshore wind turbine

timating the true 50-year extreme response with high accuracy requires the characterization of the
response over at least one order of magnitude longer time periods than the return period of interest,
we used a statistical response emulator for the short-term response and a statistical model to generate
environmental data of arbitrary lengths.

A high-accuracy estimate of the response was obtained by simulating the short-term response of
continuous 1000-year artificial time series using a response emulator. The emulator was previously
created based on multiphysics simulations that were performed across the complete wind-wave vari-
able space. We considered five different environmental contours, including the approach that is
currently recommended in the design standard IEC 61400-3-1 [129]. We found that – as already
suggested by other authors – the recommended IFORM contour approach can underestimate the
response to some degree because it assumes a convex failure surface. However, this effect was only ap-
parent in some response variables such as the 10 m moment, but it did not play a role in others such
as the 30 m moment. In addition, the effect was relatively small in the affected response variables.
Other sources of bias of the contour-based estimates were serial correlation and short-term variabil-
ity. For the 10 m moment short-term variability was by far the strongest source of bias. The broader
literature on marine structures proposed to compensate for this effect by evaluating the contour’s
design condition at a higher quantile of the short-term response. Currently, this is not mentioned
in the wind turbine design standard [129], which recommends using the average of the maxima of
several stochastic realizations. For a symmetric distribution this is equivalent with evaluating the dis-
tribution of the maxima of the short-term response at the 0.5 quantile, in other words, taking the
median maximum. Here, we found that this could dramatically underestimate the true 50-year re-
sponse. For the 50-year extreme of the moment at 10 m water depth the design conditions needed to
be evaluated at the 0.99 quantile to compensate the bias, otherwise the true response was underesti-
mated by 25-28% (depending upon which relationship for Tp|V,Hs was considered). Alternatively,
if a highest density contour were used instead of an IFORM contour, its design conditions needed
to be evaluated at the 0.9 quantile to compensate for the bias.

The differences between contour-based estimates and the true 50-year return values, however,
were very sensitive to the type of response (moment at 30 m water depth or moment at 10 m water
depth) and are likely also very sensitive to the offshore site: The turbine’s controller succeeds in pitch-
ing the blades to reduce loads as wind speeds increase, however, as a side-effect long-term extremes
might occur during power production or during parked condition – depending upon the response
variable and the site’s environmental conditions. This makes estimating the extreme response based
on an environmental contour particularly challenging as the response’s short-term variability at these
two states can be very different. Thus, the bias in a contour-based estimate due to short-term variabil-
ity can vary depending on the response variable and offshore site characteristics. The full long-term
analysis used in this work can be used to calculate an unbiased estimator of the long-term extreme
response and to identify the different sources of bias associated with a contour-based estimate.

Data availability

The artificial time series and the results of the multiphysics simulation are available as a Zenodo
respository at https://doi.org/10.5281/zenodo.5013306 . The scripts used in the analysis of this study
are available as a GitHub repository at https://github.com/ahaselsteiner/2021-extreme-response .
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8 Conclusions and outlook

8.1 Main findings

This thesis addressed the design process of offshore structures, with a focus on offshore wind tur-
bines. Three problematic steps in the current design process were identified and new methods were
proposed to address these problems. The three steps were:

• Modeling the long-term probability distribution of significant wave height FHs ;

• Modeling the wind and wave joint distribution FV,Hs,Tp ; and

• Defining joint N -year environmental extremes that lead to an N -year structural response.

To address the first step, it was shown that the long-term distribution of significant wave height can
be modeled with an exponentiated Weibull distribution and that it performs better than the state-of-
the-art model, the translated Weibull distribution. The translated Weibull distribution lacks the abil-
ity to describe both, the body and the tail of the distribution accurately. When plotted on Weibull
paper, empirical data describe a bending curve indicating that a 2-parameter Weibull distribution
or a translated Weibull distribution, with their single shape parameter cannot describe the observa-
tions accurately. The exponentiated Weibull distribution has a second shape parameter that gives the
model the required flexibility to describe the shape of the empirical distribution. When plotted on
Weibull paper, the second shape parameter controls the curvature of the line.

Based on six datasets, it was shown that the exponentiated Weibull distribution can describe em-
pirical wave height data better than the translated Weibull distribution when the same parameter es-
timation technique is used. When one is interested in very high quantiles of significant wave height
as in this work, one can use weights in the parameter estimation procedure. A weighted least squares
fitting method that prioritizes observations of high wave height was proposed. This method allowed
predicting the height of the highest 0.1% wave height values with a mean absolute error of less than
0.5 m (0.37±0.08 m; mean and standard deviation over six datasets).

For the second step, new models for the wind and wave joint distribution were proposed and
assessed. As the exponentiated Weibull distribution was found to be advantageous to model the
marginal distribution of significant wave height, it was also used in a two-dimensional joint model
of wind speed and significant wave height and in a two-dimensional joint model of significant wave
height and zero-up-crossing period. Further, a novel idea to model the dependence structure of these
environmental variables was explored: Instead of considering only dependence functions based on
goodness-of-fit, dependence functions that can be interpreted physically were proposed. The de-
pendence structure of wind speed and significant wave height was modeled such that the median
significant wave height conditional on wind speed increases with h̃s = c6+ c7v

c8 where c6, c7, and
c8 are parameters that are estimated based on empirical data. The advantage of this model structure
is that one can interpret c6 as the part of significant wave height that is not generated by wind at the
same place and the same time and the second term that contains c7 and c8 as the part that is generated
by local winds. Then, the parameter c8 describes the type of wind sea. Oceanographers have devel-
oped various theories for wind seas that imply different values of c8. Thus, the model’s estimated
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8 Conclusions and outlook

parameter values can be compared with expectations based on oceanographic reasoning. If the pa-
rameter values pass such a validity check, trust might be higher if they are used for extrapolation.
Compared to the wind speed - significant wave height joint model that is currently recommended in
engineering guidelines, this novel model seemed to describe the dependence structure better.

The third issue that was addressed in this thesis was howN -year environmental extremes could be
defined that should lead to an N -year structural response. It was shown that the method that is cur-
rently mostly used to define such joint extremes, the inverse first-order reliability method (IFORM),
is non-conservative if the structural response has certain characteristics: If the structural response
function is non-monotonic and the contour that describes joint extremes has multiple regions of
high response, N -year environmental extremes lead to an extreme response with a return period of
less thanN years. It was proposed that, alternatively, N -year environmental extremes can be defined
as the boundary of a highest density region that is exceeded on average once every N years anywhere.
When the response of an offshore structure is evaluated at the environmental conditions along such
anN -year highest density contour the highest structural response will always have a return period of
at leastN years (for a deterministic response function). Thus, this definition for joint environmental
extremes will lead to conservative design loads, irrespective of the topological characteristics of the
response function.

Finally, a case study on the extreme response of an offshore wind turbine was conducted. This case
study served to test the appropriateness of the overall design methodology for offshore structures that
was described in this thesis. Furthermore, it explored the sources of bias in various environmental
contour methods. Based on 516 hourly multiphysics simulations, a statistical response emulator was
developed that described how the offshore wind turbine behaved at any given wind speed, significant
wave height, spectral peak period variable value. It was found that – as expected – the state-of-the-
art IFORM environmental contour method led to non-conservative results. However, most of the
underestimation was due to the response’ short-term variability. The bias due to the way the joint
environmental extremes were defined had a much smaller influence. The results suggest that the
design practice described in IEC’s current offshore wind standard [129] should be adapted: A higher
quantile than the median of the short-term response should be used as the design value.

To support researchers and practitioners who design or analyze offshore structures, the methods
and models that were developed in this thesis were integrated into a methodology for the design
process of offshore structures. Furthermore, they were implemented in an open-source software
package. This software was written in Python and can be used as an importable package. As of au-
tumn 2021 seventeen external persons openly interacted with the software package (they asked ques-
tions via emails, via the GitHub repository or “starred” the repository, which is a way to recommend
the software). These persons included persons working at universities, shipbuilding companies and
wind turbine manufacturing companies. The software package is written in such a way that it can
be easily extended with other models to describe offshore environmental conditions and other meth-
ods to construct environmental contours. The author of this thesis intends to keep maintaining the
software.

8.2 Open questions and future research

The new insights presented in this thesis on modeling the offshore environment and on estimating
a structure’s extreme response also shed light on important research questions that are still open.
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8.2.1 Modeling the environment

It was found that the exponentiated Weibull distribution can describe the empirical distribution of
significant wave height well. This study was statistically descriptive but did not aim to understand
the physical mechanisms why significant wave height data roughly follows an exponentiated Weibull
distribution. Aiming to bring together physical models of ocean waves and the statistical description
of significant wave height’s long-term distribution would be an interesting topic for future research.
The long-term distribution of wind speed is often described with a 2-parameter Weibull distribution,
an exponentiated Weibull distribution with a shape parameter δ = 1, such that similar theories
might apply to wind speed and wave height.

New models for the joint description of wind speed, significant wave height, and wave period were
proposed. One aspect not addressed in this thesis is the modeling of the region of very low spectral
peak periods for a given significant wave height. Due to wave breaking, there is a limit on how low
zero-up-crossing period or spectral peak period can become for a givenHs value. This wave breaking
limit is not well captured in current joint distribution models. New joint models of significant wave
height and wave period that better respect this wave breaking limit could be developed in future
research.

In this thesis, both the marginal distribution of Hs and the joint distribution of wave height and
wind speed were modeled as global models where hourly observations were assumed to be indepen-
dent and identically distributed. Obviously, this is a strong simplification that causes some bias. If a
distribution function based on serially correlated data is used to estimate a return value, it will overes-
timate the true return value [159]. This type of bias affects marginal return values such as the 50-year
extreme significant wave height but also joint extremes such as the 50-year wind speed - wave height
contour. Future research could further analyze this type of bias and explore how it could be compen-
sated, for example, by making use of the sub-asymptotic extremal index or by estimating correction
factors.

Formulating these open issues as research questions, we can ask:

• Which physics explains why the long-term distribution of significant wave height roughly fol-
lows an exponentiated Weibull distribution?

• How can joint models of significant wave height and wave period better respect the wave
breaking limit?

• How large is the bias of assuming that hourly observations are independent and how could it
be compensated?

8.2.2 Estimating the extreme response

This thesis explored how the extreme response of a structure can be estimated with the environmen-
tal contour method. It showed under which conditions the traditional inverse first-order reliability
method yields non-conservative results and proposed an alternative for these cases: the highest den-
sity contour method. It also showed that the construction of the contour is only one source of bias
and that serial correlation between the environmental conditions and variability in the structure’s
short-term response are other important sources of bias. One type of assumption, however, was not
explored. Here, joint models of only three environmental variables were considered: wind speed, sig-
nificant wave height and wave period. The variation over time of these environmental variables were
considered to affect the structural response the most. Of course, also changing values of wind and
wave direction, turbulence intensity, ocean current, sea level, and other variables affect the response.
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Future research could explore how strong each of these variables influence the structural response
and how much bias one introduces if one assumes that these variables are constant.

Another topic for futures research is how to handle the effects of a changing climate on estimates
of a structure’s extreme response. Climate models can be used to predict how environmental con-
ditions might change in the future. For the environmental contour method, however, it represents
a challenge of how to integrate such projections into the method. Contours are constructed based
on joint distribution models, which implicitly assume a stationary climate. Consequently, for con-
tour methods, a joint distribution model that represents a type of average of future environmental
conditions over the structure’s expected lifetime would need to be used.

Formulated as research questions, we can ask:

• How much bias does assuming that various environmental variables are constant over time
introduce in estimates of the extreme response of a structure?

• How can knowledge about a changing climate be incorporated into the environmental con-
tour method?

Studying the current design process of offshore wind turbines also raised some questions that
are not about improving methods, but related to the consequences when we design wind turbines
following current guidelines and standards. Turbines are designed to withstand 50-year extreme
events, but allow failure for rarer storm events. This design philosophy made the author question:

• What are the consequences if a 100-year storm event occurs?

• How many wind turbines will be destroyed and how severely will overall energy supply be
affected if such a storm event occurs?

8.2.3 Using design contours in other fields

The environmental contour method is a structural design method for dealing with multiple environ-
mental conditions that change over time. It describes these changing environmental conditions as
random variables. Then joint environmental extremes with a given return period can be found and a
structure to withstand these environmental conditions can be designed. In frameworks of a general
product development process such as Pahl and Beitz’s methodology [203], these extreme environ-
mental conditions represent design requirements. Obviously, in a design process, not only extreme
environmental conditions, but various types of requirements must be fulfilled. Given that the envi-
ronmental contour method is in principle mathematically abstract and not inherently connected to
wave heights or wind speeds, it might be a useful method for other fields of design.

Ergonomics is a field that also deals with requirements that are derived from random variables. As
an example, consider the design process of a car’s seat. It is a typical requirement that the seat must be
ergonomic for both extraordinarily short and extraordinarily tall persons. In ergonomics – similar
to structural design – often the joint distribution of variables must be considered as the dependence
structure between variables allows designers to differentiate whether some variable combinations
are important or irrelevant. For example, the designer of a car seat might consider two variables, a
person’s total height and a person’s hip height. The seat should then fit a person with a very high
total height and hip height but also a person with a very low total height and hip height. However,
it is questionable whether the seat should also be designed for someone with a very high total height
and very low hip height, as the existence of such a person is extremely unlikely. Considering the
joint distribution of these variables and deriving a contour can support designers of the car seat with

150



8.2 Open questions and future research

reasonable design requirements. Thus, the framework of the environmental contour method could
be generalized to non-environmental variables. In a conference paper [101], we proposed such a
generalization and showed how contours can be used to design a power tool such as a hand-held drill
that can be held comfortably by at least 90% of the population.

Future work could explore this direction further and compare methods, which help designers
deal with extreme requirements in various fields of design. Potentially, a framework that connects
the field of general engineering design based on Pahl and Beitz’s design methodology [203] and the
field of statistics of extremes [39] could be developed – with the entity of a requirement serving as
the connection point between the two fields.
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A Appendix

A.1 Definitions for bivariate exceedance

This section provides mathematical definitions for the concepts described in the section on multi-
variate extremes (Section 2.2.2). Serinaldi [227] defined the probabilities pAND and pOR. In this
thesis, we refer to these as “AND exceedance probability” and “OR exceedance probability” and
see them as categories of more specific exceedance probabilities. In the following, 14 probabilities
of exceedance that belong to four categories will be defined: “AND exceedance probability,” “OR
exceedance probability,” “angular exceedance probability,” and “isodensity exceedance probability”
(Figure A.1).

AND exceedance probabilities can be differentiated by the direction of exceedance. These proba-
bilities are based on regions where both variables exceed a threshold:

pAND>> := Pr(X1 > x1 ∩X2 > x2), (A.1)
pAND>< := Pr(X1 > x1 ∩X2 < x2), (A.2)
pAND<> := Pr(X1 < x1 ∩X2 > x2, (A.3)
pAND<< := Pr(X1 < x1 ∩X2 < x2). (A.4)

All points within the variable space that have a particular AND exceedance probability define an
AND exceedance boundary (Figure A.1).

A similar differentiation is possible for OR exceedance probabilities, which are based on regions
where either X1 or X2 exceeds a threshold:

pOR>> := Pr(X1 > x1 ∪X2 > x2), (A.5)
pOR>< := Pr(X1 > x1 ∪X2 < x2), (A.6)
pOR<> := Pr(X1 < x1 ∪X2 > x2), (A.7)
pOR<< := Pr(X1 < x1 ∪X2 < x2). (A.8)

An OR exceedance boundary is the set of all points within the variable space that has a particular
OR exceedance probability (Figure A.1).

“Angular exceedance probabilities” pANG are based on exceedance regions that use a straight line
with angle θ to the abscissa as their boundary (Figure A.1). Marginal exceedance probabilities are
special cases of these probabilities: at angles of 0, 90, 180, and 270 degrees the angular exceedance
becomes pure marginal exceedance of X1 or X2. If angular exceedance probability is defined in the
original variable space it is expressed as

pANG,O := Pr[X1 cos(θ) +X2 sin(θ) > cANG], (A.9)
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Figure A.1: Selection of possible definitions for bivariate exceedance that belong to the groups of “AND ex-
ceedance,” “OR exceedance,” “angular exceedance,” and “isodensity exceedance.” Each type of
exceedance probability contains probability content α ∈ [0, 1], which in offshore structural de-
sign is usually determined based on a prescribed target reliability (see Section 2.3). Some types
of exceedance have many exceedance regions (AND, OR, ANG; only some sample exceedance re-
gions are plotted in these cases), while others have a single exceedance region (ISO). For simplicity,
the outer regions that are far away from the exceedance boundaries of some exceedance regions are
not shown here (for example, AND exceedance regions extend beyond the regions shown in red).
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where cANG ∈ R is a constant that is determined when values for pANG,O and θ are given (pANG,O =
α with α ∈ [0, 1]; θ ∈ [0, 360 deg)). Huseby et al. [124] used pANG,O in an environmental contour
method.

Sometimes, however, it can be advantageous to define angular exceedance in the standard normal
space (see, for example, [263]). Then, the definition of this exceedance region involves the transfor-
mation of the original random variables into random variables that are standard normal distributed:

pANG,S := Pr(Φ−1[FX1(X1)] cos(θ) + Φ−1[FX2|X1
(X2)] sin(θ) > cANG), (A.10)

where Φ−1 denotes the inverse standard normal distribution function and FX1 and FX2|X1
denote

the distribution functions of the original random variables X1 and X2, respectively. Standard nor-
mal distributed variables are typically denoted as U [27, 215, 263] such that the equation can be
written as

pANG,S = Pr[U1 cos(θ) + U2 sin(θ) > cANG]. (A.11)

In standard normal space, cANG is constant over θ and often radius β, in structural design called
“reliability index,” is used. The probability that the exceedance boundary is exceeded anywhere
can therefore be expressed using the reliability index. This total exceedance probability is obviously
greater than the probability that exceedance occurs at a single angle:

Pr(
√︂

U2
1 + U2

2 > β) > pANG,S. (A.12)

The last category is “isodensity exceedance” and comprises definitions that make use of a curve of
constant probability density (Figure A.1). One definition for isodensity exceedance is defining the
exceedance region by exceeding the boundary of a so-called highest density region [100, 126]. Then
any point x whose density value is less than a density threshold fm contributes to the probability of
exceedance pISO,HDC:

E := {x ∈ R2 : f(x) < fm},
pISO,HDC := Pr(X ∈ E). (A.13)

This kind of isodensity exceedance is used in the highest density contour method presented in this
thesis and in stand-alone publications [100, 101].

If isodensity is desired, but only high values of one variable are of interest, for example, high values
of X2, a subset of all points that fulfill f(x) = fm can be used as the exceedance boundary. Let
Hu(x1) denote a function that, for a given x1 value, returns the maximum x2 value of all points
that have probability density fm and −∞ if no x2 value fulfills the condition:

Hu(x1) =

{︄
max{x2 ∈ R : f(x1, x2) = fm}, if {x2 ∈ R : f(x1, x2) = fm} ≠ {}
−∞, otherwise.

(A.14)

Based on Hu we can define the exceedance region E> and the probability of exceedance pISO>:

E> := {x ∈ R2 : x2 > Hu(x1)}, (A.15)
pISO> := Pr(X ∈ E>). (A.16)
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Exceedance probability Design region’s probability pDR

pAND∗ = α ⇒ pDR < 1− α
pOR∗ = α ⇒ pDR > 1− α
pANG† = α ⇒ pDR < 1− 2α
pISO> = α ⇒ pDR = 1− α
pISO< = α ⇒ pDR = 1− α
pISO,HDC = α ⇒ pDR = 1− α
pISO,MARG = α ⇒ pDR < 1− α

Table A.1: Relationship between the probability of exceedance and the design region’s probability for alterna-
tive definitions of exceedance. ∗ = True for any direction of exceedance (indices >>, ><, <> and <<)
†=True for pANG,O and pANG,S.

Although not entirely the same, a similar exceedance probability was used by Haver [109, 110] in an
environmental contour method.

Similarly, if low values are of interest, the exceedance probability pISO< can be used. We define it
based on the function Hl(x1) that returns the lowest x2 value that fulfills f(x1, x2) = fm and ∞
if no x2 value fulfills the condition:

Hl(x1) =

{︄
min{x2 ∈ R : f(x1, x2) = fm}, if {x2 ∈ R : f(x1, x2) = fm} ≠ {}
∞, otherwise.

(A.17)

Then

E< := {x ∈ R2 : x2 < Hl(x1)}, (A.18)
pISO< := Pr(X ∈ E<). (A.19)

Yet another option for “isodensity exceedance” that has been proposed [197] is to use marginal ex-
ceedance of the first variable. Based on the N -year marginal return value x1,[N ] (see Expression 2.11)
the conditional mean value of X2 given x1,[N ] is chosen [197]. Then, all values within the variable
space with the same probability density as f [(x1,[N ],mean(X2|x1,[N ])] are considered to have the
exceedance probability that is associated to the marginal return value x1,[N ]:

pISO,MARG := Pr(X1 > x1,[N ], X2 > −∞) = Pr(X1 > x1,[N ]) = 1− FX1(x1,[N ]), (A.20)

where FX1 is the marginal distribution function of random variable X1.
Given that, in principle, there are infinite possibilities how bivariate exceedance probability can

be defined, these 14 definitions are only a subset of the possibilities. Other definitions that have been
used can be found, for example, in references [27, 109, 110].

A.2 Long-term distribution of the significant wave height

Estimators based on weighted least squares

The estimation method of the three parameters of the exponentiated Weibull distribution, α, β and
δ is based on the “Weibull paper linearization” that is commonly used for the 2-parameter Weibull
distribution (see, for example, Scholz [224]). In the following, this method will be described in detail.
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The inverse cumulative distribution function of the exponentiated Weibull distribution reads

x = α[− loge(1− p1/δ)]1/β. (A.21)

Taking the logarithm with base 10 gives

log10(x) = log10(α) +
1

β
log10[− loge(1− p1/δ)], (A.22)

which shows a linear relationship between log10(x) and log10[− loge(1− p1/δ)].

Thus, when writing log10(x) = x∗, log10(α) = a,
1

β
= b and log10[− loge(1 − p1/δ)] = p∗

we get the simple expression
x∗ = a+ bp∗. (A.23)

This linear relationship allows the use of standard linear regression techniques to estimate the pa-
rameters a and b and, with these parameters, the distribution’s parameters α and β.

Here, we have chosen to minimize the weighted squared deviations between the observed and the
predicted values. Let the function Q express the sum of the weighted squared errors:

Q(a, b; δ) =

n∑︂
i=1

wi(x
∗
i − x̂∗i )

2 =

n∑︂
i=1

wi[(x
∗
i − (a+ bp∗i )]

2, (A.24)

where p∗i is the normalized pi value,

p∗i = log10[− loge(1− p
1/δ
i )]. (A.25)

We can find the weighted least squares (WLS) estimators â and b̂ by differentiatingQ(a, b) and find-
ing its root:

∂Q(a, b)

∂a
= −2

n∑︂
i=1

wi[x
∗
i − (a+ bp∗i )] = 0, (A.26)

∂Q(a, b)

∂b
= −2

n∑︂
i=1

wip
∗
i [x

∗
i − (a+ bpi)] = 0. (A.27)

Solving for a in Equation A.26 leads to

â = x̄∗ − b̂p̄∗, (A.28)

where x̄∗ =
∑︁n

i=1wix
∗
i and p̄∗ =

∑︁n
i=1wip

∗
i . Similarly, by solving for b in Equation A.27 and by

using Equation A.28, we can derive an expression for b̂:

b̂ =

∑︁n
i=1(wip

∗
ix

∗
i )− x̄∗p̄∗∑︁n

i=1(wip∗2i )− p̄∗2
(A.29)

With â and b̂ we can calcuate α̂ and β̂:
α̂ = 10â, (A.30)

β̂ = 1/b̂. (A.31)
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Figure A.2: Box plots of the estimated parameters of an exponentiated Weibull distribution. The true distri-
bution has the parameters α = 1, β = 1 and δ = 2. The thick line represents the median and
the box the 25th and 75th percentile. 100 samples, each with 100,000 data points were used for
the estimation.

Thus, for any given δ value we can explicitly compute the WLS-estimators α̂ and β̂.
We are, however, still missing an expression for the estimator δ̂. To derive this expression, let us

define a function that returns the weighted squared error of an exponentiated Weibull distribution
with a given parameter δ as

Qδ(δ) = Q(â, b̂; δ). (A.32)

The WLS-estimator δ̂ is the δ value that minimizes this function:

δ̂ = argmin
δ

[Qδ(δ)]. (A.33)

We did not try to find an analytical solution to Equation A.33. Instead, we used Matlab’s function
fminsearch.m to compute the minimum.

To evaluate whether the implemented weighted least squares estimation method works correctly,
we estimated the parameters based on samples that were drawn from a known distribution. We
drew 100 samples, each with 100,000 data points, from an exponentiated Weibull distribution
with parameters α = 1, β = 1 and δ = 2. The estimated parameters were α̂ = 0.996±0.067,
β̂ = 0.998±0.033, and δ̂ = 2.023±0.183 (N = 100; Figure A.2) where the values after the ±-sign
represent standard deviations.

Comparison with gamma and beta distributions

Two additional 3-parameter distributions were tested: The generalized gamma distribution that was
proposed by Ochi [198],

f(x) =
c

Γ(m)
λcmxcm−1 exp[−(λx)c], (A.34)

and a 3-parameter beta distribution of the second kind that was proposed by Ferreira and Guedes
Soares [63],

f(x) =
α

B(k, n− k + 1)

(αx)n−k

(1 + αx)n+1
. (A.35)

These distributions were fitted to the six datasets using maximum likelihood estimation and over-
all mean absolute error was calculated. The errors were 0.0317±0.0203 m and 0.0294±0.0177 m
(N = 6) for the gamma distribution and the beta distribution, respectively (Table A.2).
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Dataset

Distribution A B C D E F Mean ± standard dev.

Translated Weibull 0.0941 0.0532 0.0492 0.0662 0.0604 0.0964 0.0699±0.0205
Exponentiated Weibull 0.0105 0.0219 0.0252 0.0241 0.0174 0.0561 0.0259±0.0158
Generalized gamma 0.0644 0.0339 0.0150 0.0205 0.0115 0.0447 0.0317±0.0203
3-parameter beta 0.0112 0.0256 0.0273 0.0308 0.0190 0.0626 0.0294±0.0177

Table A.2: Overall mean absolute error of the four tested 3-parameter distributions. All distributions were
fitted using maximum likelihood estimation. Bold letters indicate the lowest error for the particular
dataset.

A.3 Case study

The coordinates of the four 2D contours are listed in Table A.3.
Two response emulators were used in the study presented in Chapter 7. Both are conditional

generalized extreme value (GEV) distributions. The location parameter µ, its scale parameter σ, and
its shape parameter ξ were modeled as functions of wind speed, wave height and wave period.

The response emulator for the 1-min maxima of the overturning moment at 30 m water depth,
R, reads:

F1min(r|v, hs, tp) = F1min[r;µ(v, hs, tp), σ(v, hs, tp), ξ(v, hs)], (A.36)

where

µ(v, hs, tp) =
√︂
µ2
wind + µ2

wave

µwind =

{︄
a1v + a2/[1 + a3(v − a4)

2]− a2/[1 + a3(0− a4)
2] if v ≤ 25m s−1

a5v
2, otherwise

µwave =

{︄
µwave,pp if v ≤ 25m s−1

a6µwave,pp, otherwise

µwave,pp = a7hs{1 + a8 exp[a9|tp − a10|]}
(A.37)

with a1 = 3.26 × 106, a2 = 7.10 × 107, a3 = 0.0408, a4 = 11.6, a5 = 3.9 × 104, a6 = 1.3,
a7 = 7.41× 106, a8 = 3.53, a9 = −0.328, a10 = 3,

σ(v, hs, tp) =
√︂

σ2
wave + σ2

wind

σwind =

{︄
b1v + b2/[1 + b3(v − b4)

2] + b5/[1 + b6(v − b7)
2] if v ≤ 25m s−1

b8v
2, otherwise

σwave =

{︄
σwave,pp if v ≤ 25m s−1

b9σwave,pp, otherwise

σwave,pp = b10h
1.5
s {1 + b11 exp[b12|tp − b13|]}

(A.38)
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IFORM Highest density
V (m s−1) Hs (m) Tmedian

p (s) Tmin
p (s) V (m s−1) Hs (m) Tmedian

p (s) Tmin
p (s)

3 4.60 14.35 10.60 3 5.49 15.68 11.58
5 4.96 14.17 10.35 5 5.74 15.23 11.13
7 5.18 13.56 10.01 7 6.06 14.65 10.82
9 5.52 12.99 9.82 9 6.63 14.24 10.77
11 5.82 12.45 9.64 11 6.73 13.38 10.37
13 6.23 12.17 9.57 13 6.99 12.9 10.14
15 6.77 12.19 9.60 15 7.58 12.9 10.16
17 7.45 12.47 9.72 17 8.36 13.21 10.3
19 8.28 12.94 9.91 19 9.16 13.61 10.43
21 9.08 13.43 10.38 21 9.96 14.06 10.87
23 9.98 14.01 10.88 23 11.08 14.76 11.46
25 10.86 14.57 11.35 25 11.99 15.31 11.92
27 11.64 15.06 11.75 27 12.73 15.75 12.29
29 12.30 15.47 12.08 29 13.51 16.21 12.66
31 12.79 15.76 12.31 31 14.20 16.61 12.98
33 13.10 15.95 12.47 33 14.72 16.91 13.21
35 12.83 15.78 12.34 35 14.94 17.03 13.31
37 11.46 14.92 11.66 37 14.75 16.92 13.23

39 13.47 16.17 12.64

Table A.3: Design conditions derived from the four two-dimensional wind speed - wave height 50-year envi-
ronmental contours. Tmedian

p represents the spectral peak period that was calculated based on the
median steepness at the highest 1% of waves at a given wind speed bin and Tmin

p represents the
value based on the maximum steepness (and therefore minimum period).
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with b1 = 1.16 × 105, b2 = 2.45 × 107, b3 = 0.064, b4 = 11.6, b5 = −1.79 × 107, b6 = 0.2,
b7 = 11.6, b8 = 4700, b9 = 1.3, b10 = 5.04× 105, b11 = 11.9, b12 = −0.613, b13 = 3, and

ξ(v, hs) = ξwind + h1/3s

(c1 − ξwind)

c2

ξwind =

{︄
c3 + c4/[1 + c5(v − c6)

2] + c7/[1 + c8(v − c9)
2], if v ≤ 25m s−1

c10, otherwise

(A.39)

with c1 = −0.01, c2 = 151/3, c3 = −0.1, c4 = −0.5, c5 = 0.15, c6 = 12.5, c7 = 0.23,
c8 = 0.05, c9 = 18.5, c10 = −0.2.

Consequently, the model has 33 parameters (a1, ..., a10, b1, ..., b13, c1, ..., c10). Figure A.3 shows
how the GEV distribution’s parameters change over wind speed at calm sea (Hs = 0 m). Figure A.4
visualizes the parameter values accross the complete variable space of wind speed, wave height and
wave period.

The response emulator for the bending moment at 10 m water depth was built based on the as-
sumption that the wave and wind loads can be approximated as point forces acting on the mean
water surface level and the hub height, respectively (Figure A.5). Then, a moment balance based on
the turbine’s geometry suggests that at 10 m water depth, the wave forces contribute with a lever of
10 m and wind forces with a lever of 100 m, while they contribute with levers of 30 m and 120 m
for the mudline overturning moment. Thus, if the individual contributions from wave and wind on
the mudline overturning moment are known, they can be converted to the respective contributions
for the 10 m bending moment. Based on that idea we defined the 10 m response emulator as:

F1min(b|v, hs, tp) = F1min[b;µb(v, hs, tp), σb(v, hs, tp), ξ(v, hs)], (A.40)

where
µb =

√︂
5/6µ2

wind + 1/3µ2
wave (A.41)

and
σb =

√︂
5/6σ2

wind + 1/3σ2
wave. (A.42)

The terms µwind, µwave, σwind, σwave, and ξ are the same as in the 30 m emulator.
The response emulators of the 1-hour maxima are calculated as

F1h(r|v, hs, tp) = [F1min(r|v, hs, tp)]60, (A.43)

F1h(b|v, hs, tp) = [F1min(b|v, hs, tp)]60. (A.44)

Implementations of these two response emulators in Matlab are publicly available:

• https://github.com/ahaselsteiner/2021-extreme-response/blob/master/02-scripts/

ResponseEmulator/ResponseEmulator.m

• https://github.com/ahaselsteiner/2021-extreme-response/blob/master/02-scripts/

ResponseEmulator/ResponseEmulator10mWaterDepth.m
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Figure A.3: Emulator’s model for the generalized extreme value distribution’s parameter values at calm sea
(significant wave height of 0 m).
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Figure A.4: Parameters of the generalized extreme value distribution across the considered variable space. In 516 1-hour simulations µ, σ, and ξ were estimated (“multi-
physics” values). These 516 values were used to fit a model that predicts (µ, σ, ξ) over the complete variable space (“predicted” values).
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Figure A.5: (a) The response emulator for the 10 m moment is based on the emulator for the 30 m moment. By assuming that wind and wave forces can be approximated as
a point forces the moment at 10 m can be calculated based on a moment balance. (b) The differences between the emulated 10 m moment and the 10 m moment
in multiphysics simulations are similar to the differences between the emulated 30 m moment and the 30 m moment in multiphysics simulations.
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