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ABSTRACT
A wide range of methods have been proposed for the deriva-

tion of environmental contours for marine structures that must
meet reliability targets. An environmental contour is a set of
joint extremes of environmental conditions associated with a tar-
get return period. In general, environmental contour methods
help with the prediction of some future critical combinations of
environmental conditions (e.g., wind, waves, current) at a loca-
tion of interest based on a limited dataset, thus allowing design-
ers to ensure a prescribed structural reliability. In fact, some
of these contour methods are specifically recommended by tech-
nical specifications and standards as part of a design process.
This paper outlines the rules and procedures for a collaborative
benchmarking exercise – focused on open comparison – in which
researchers are invited to develop and present their own contour
derivation approaches based on common datasets that will be
available to all. Hindcast and observational datasets are con-
sidered and two exercises are planned: One focuses on applying
environmental contour methods to a wide range of datasets and
the other focuses on uncertainty characterization. Besides de-
scribing the benchmark’s methodology, this paper presents base-
line results of computed contours following current recommen-
dations. The overall goals of this endeavor are: (i) to work to-
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wards the development of more robust statistical models and con-
tour construction methods, (ii) to encourage increased discus-
sion in the international research community and among practi-
tioners, and (iii) to support ongoing efforts to improve technical
specifications and standards.

INTRODUCTION
Environmental contours are used to define a set of extreme

environmental conditions for which an engineering system can
be evaluated. These conditions describe the environment at a
given deployment location and may include any combination
of environmental descriptors such as wave height, wave period,
wave direction, wind speed, wind direction, current speed, and
current direction. To analyze a design (or multiple designs), en-
gineers consider the structural response of the system subject to
these conditions. Compared to its alternative, the full seastate
approach, the environmental contour method is a simplified and
quick method.

The environmental contour method has been applied for the
analysis of ships [1], offshore oil and gas structures [2, 3], off-
shore wind turbines [4, 5], and wave energy converters (WECs)
[6, 7]. A proposal to consider joint distributions of environmental
variables in design, the so-called design curve, was formulated
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Figure 1. DESCRIPTION OF THE ENVIRONMENTAL CONTOUR METHOD AND OPERATIONAL DEFINITIONS FOR ASSOCIATED TERMS. THE
METHOD COMPRISES THREE DISTINCT STEPS: STATISTICAL MODELLING, CONTOUR CONSTRUCTION AND DESIGN CONDITION SELECTION.
THIS BENCHMARKING EXERCISE FOCUSES ON CONTOUR DERIVATION, WHICH INCLUDES STATISTICAL MODELLING AND CONTOUR CON-
STRUCTION.

by Haver [8]; later, Winterstein et al. [9] formally introduced
the notion of environmental contours, based entirely on struc-
tural reliability principles. In general, the environmental contour
method involves three steps: (i) establishing a statistical model
that characterizes the environment based on a sample of environ-
mental states (“statistical modelling”), (ii) computing the envi-
ronmental contour based on that statistical model (“contour con-
struction”) and (iii) selecting discrete points along the contour
for subsequent use in the design process (“design condition se-
lection”; Figure 1). In this paper, we will use the term “contour
derivation” to describe the combination of statistical modelling
and contour construction.

Various model structures for the method’s first step, statis-
tical modelling, have been proposed. They range from full joint
distribution models based on the conditional modelling approach
[8–11] to copula models [12–14], models derived from applying
principal component analysis [15] and joint distributions derived
from multivariate kernel density estimation [16, 17]. The sec-
ond step, contour construction, can be carried out with a variety
of different methods as well. Researchers need to first choose a
definition for multivariate exceedance and then apply an efficient
numerical method to construct the desired contour. Currently,
probably the most popular method to construct an environmen-
tal contour is based on the definiton proposed by Winterstein et
al. [9], who defined multivariate exceedance based on hyper-
planes in the standard normal space (inverse first-order reliabil-
ity method; IFORM). However, in the last six years, researchers
have proposed a variety of different definitions for the construc-
tion of an environmental contour [18–21]. The final step, that of
selecting individual environmental states (“design conditions”)
along the contour, is also important and is generally determined
by best practices for the specific system under consideration.

While there is a great variety of methods to derive an
environmental contour in the academic literature, practitioners
might follow guidance provided in standards such as DNV-RP-
C205:2017 [22] as well as NORSOK N-003 [23]. In the de-
sign process for offshore wind turbines, the international stan-
dard IEC 61400-3 [24] requires designers to define severe sea
states by selecting joint values of the significant wave height and

wind speed with a recurrence period of 50 years. The standard
recommends use of the IFORM for that task. Similarly, the stan-
dard IEC TS 62600-2 [25], which outlines the design process
for WECs as well as tidal and ocean current energy converters,
utilizes sea states from environmental contours.

Previous efforts to compare contours have provided useful
findings. Leira [26] considered a series of stochastic models for
use in developing environmental contours. Manuel et al. [14]
provided procedures for constructing contours using variables’
joint dependence structures based on copula definitions as well
as Rosenblatt and Nataf transformations. In addition, Manuel et
al. quantified the associated uncertainty in constructed contours
resulting from limited data. Other authors examined different
definitions for multivariate exceedance and, consequently, dif-
ferent contour construction methods, given the same statistical
model. Such comparative studies were conducted, for example,
by Vanem and Bitner-Gregersen [27], Haselsteiner et al. [20],
Chai and Leira [21] and Wang et al. [28]. Although these studies
provide many useful insights, a benchmark problem that is open
to everybody and that lays out a clear methodology for compar-
ison, could provide the basis for more systematic and complete
results.

To better understand the performance of different environ-
mental contour methods, this paper outlines the methodology for
a benchmarking exercise that is proposed. Various methods to
characterize the environment and to derive environmental con-
tours will be applied to a selected set of offshore system deploy-
ment locations. The different methods will be evaluated based
on a series of metrics, with the goal of open comparison and
the development of new ideas in the field. We designed the for-
mat of the exercise such that all environmental contour methods
that have been proposed in the past can be employed and eval-
uated. Consequently, apart from welcoming all possible types
of statistical modeling approaches, participants are free to use
their desired definitions for multivariate exceedance and associ-
ated numerical computation techniques.
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METHODOLOGY
The following sections describe the decision process used to

define the organization and structure of the environmental con-
tour comparison exercise. Given that the definition of such a
benchmarking exercise is far from straightforward, these sections
serve as an explanation of the thought process of the organizers.
We identified the following important concepts, which we would
like to consider:

1. Predictive power: In application, an environmental contour
is generally used to better understand the potential loading
on a structure over some long design life (e.g., 25 years),
while relying on less data (from, say, 15 years). Therefore,
the constructed contour must have some predictive power
and the capability of being used, by extrapolation, for design
periods longer than the data sample.

2. Site-specific data: Bathymetry, weather, nearby geography,
and large-scale metocean phenomena (e.g., currents, trade
winds), all combine to give a specific character to the meto-
cean conditions at a given location. An environmental con-
tour method must be flexible enough to capture the site-
specific dependence structure in a dataset, while not “over-
fitting” to the data.

3. Uncertainty in relation to limited datasets: When consid-
ering the ultimate design load of a structure, uncertainty in
this load is just as important - perhaps more important - than
the derived load itself. Given the typically limited nature of
recorded measurements for metocean data, it is clear that a
method’s associated level of uncertainty, given a limited data
record, is an important consideration. The uncertainty needs
to be characterized or quantified to the extend possible.

4. Defining multivariate extremes: An environmental con-
tour represents the definition of a set of multivariate ex-
tremes. In comparison with univariate extremes, multi-
variate extremes can be defined in multiple ways, and re-
searchers have proposed various definitions in the context of
the environmental contour method. A comparison between
environmental contours, that are based on different statisti-
cal models and on different definitions for multivariate ex-
ceedance, is difficult because of these alternative definitions.

In the design of this comparison exercise, we have attempted
to consider all of these concepts outlined previously. The follow-
ing sections lay out the process used to determine the structure of
this contour comparison effort. First, we considered the datasets
to be included in the comparison. Next, although somewhat tied
to the selection of datasets, we define a set of comparison meth-
ods and metrics.

Datasets
We considered three high-level categories of datasets for the

benchmark: (i) real datasets from wave buoys and wind measur-

ing masts, (ii) hindcast datasets created by models of wind-wave
interaction, and (iii) synthetic datasets sampled from pre-defined
distributions (not known to the participants).

When selecting datasets for this effort, one important con-
sideration was the eventual evaluation and comparison of con-
tours produced by participants. It is desired to have some sort
of blind validation, in which participants produce their results,
which can then be evaluated against a ground truth. There are
a number of ways in which this can be accomplished for the
present study, all with some deficiencies.

If real data, measured by buoys and offshore stations, are
used, one can potentially withhold some subset of the data. For
example, if a wave buoy has 25 years of data, we could provide
10 years of data, withholding 15 years of data. To provide a
blind evaluation, a 25 year contour produced by a participant can
be compared with one based on all of the available 25 years of
data. On the surface, this seems like a rational approach; how-
ever, given the stochastic nature of the system considered, those
25 years of data represent only a single realization, of which an
infinite number are possible. Nonetheless, this remains an attrac-
tive approach, as working with real data is generally preferable,
when available. Another issue with using real data is the limited
nature of recorded measurements, which are often available for a
much shorter period than the return period of interest.

A second option for conducting blind evaluations is to use
synthetic data. By providing samples to participants from some
known, but not disclosed, distribution, an absolute evaluation can
be made. This approach is more ideal in terms of evaluation,
since it is straightforward to define the correct contour given a
known or assumed exact distribution. However, this approach is
somewhat hampered by the challenge of choosing a distribution.
Ideally, this distribution should very closely mirror those seen in
real data, but the required statistical modelling of the environ-
ment is an open research problem that we want to address in this
benchmark.

Hindcast data represent something of a middle ground be-
tween the two former options, that of real data and of a prede-
fined joint distribution. Hindcast data usually cover longer peri-
ods than real data, but are associated with a modeling error.

Comparison methods & metrics
The manner in which contours are to be compared is another

important factor. It can be interesting, and in fact helpful, to
perform a simple visual comparison of a set of overlaid contours.
From this, one can intuitively see how different contours behave.
However, it would also be useful to have some quantitative means
for performing a comparison.

Based on these considerations, we have selected the follow-
ing methods and metrics for comparing contours that will be used
in two exercises, Excercise 1 (E1) and Exercise 2 (E2).
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Qualitative methods:

Simple overlay (E1) - We will plot the different contours
together for visual comparison.
Uncertainty overlay (E2) - We ask participants to resam-
ple 1000 times from a dataset, apply their contour derivation
method 1000 times, and plot the resulting 1000 contours in
an overlay for visual uncertainty characterization.

Quantitative methods:

Points outside the contour (E1) - We will count the points
that lie outside the contours. Note that due to the different
definitions for exceedance in environmental contour meth-
ods, the number of expected points outside the contour will
be different among the methods.
Maxima (E1) - In each dimension, we will record the max-
ima predicted by the contours and those observed in the mea-
surement or hindcast sample.
Confidence intervals (E2) - We ask participants to compute
a 95% confidence interval of their environmental contour
based on 1000 samples that were resampled from a given
dataset (further details are given in section “Exercise 2: Un-
certainty characterization”).

Note that the methods and metrics above are not proposed to jus-
tify a basis for a definitive scoring. Instead, they strive to pro-
vide a limited, but practical, means of comparison. Thus, while
the metrics do not necessarily represent a perfect set of tools for
ranking the performance of any given contour, we believe that in
the absence of better alternatives, these metrics provide a good
means for open comparison, which is the aim of this exercise.

EXERCISES & ORGANIZATION
Exercise 1: Provided datasets and desired contours

After consideration of these options, the mixture of datasets
specified in Table 1 were selected. Thus, we will consider six
total cases: three measured datasets (A, B, and C) and three hind-
cast datasets (D, E, and F). Figure 2 shows a map of locations
for these datasets.

The real datasets are taken from three locations along the
eastern coast of the United States. These are each located off the
coast of Maine, off the coast of Florida, and in the center of the
Gulf of Mexico. In each case, 10 years worth of hourly wave
data collected from National Data Buoy Center (NDBC) buoys
operated by the U.S. National Oceanic and Atmospheric Admin-
istration (NOAA) will be used in the exercise. We preprocessed
NDBC’s original datasets to provide participants consistent time
series of significant wave height Hs and zero-up-crossing period
Tz. Participants will be asked to derive 1-yr and 20-yr environ-
mental contours of these two variables. Roughly 10 years of ad-
ditional data will be retained to use in comparing the contours.

The hindcast datasets are from the North Sea, with one of the
three datasets each located nearest to Germany, the UK, and Nor-
way, respectively. In these cases, 25 years of hourly data from the
coastDat-2 hindcast [29] will be provided. Two variables, near-
surface wind speed U10 and significant wave height data Hs will
be used. The wind speed variable U10 is computed to represent
a 10-minute mean value, measured 10 m above sea level. Par-
ticipants will be asked to derive 10-yr and 50-yr environmental
contours of the significant wave height and the near-surface wind
speed.

Figure 2 also shows scatter plots of the datasets to be pro-
vided. It is clear that the datasets contain unique characteristics.
The wave datasets (A, B, and C) exhibit markedly different pat-
terns, with bimodal characteristics evident in datasets A and B. In
the wind-wave datasets (D, E, and F), we see that the observed
maximum wave height at a given wind speed interval varies
greatly between the datasets. For wind speeds < 10 m s−1 the
observed highest significant wave height varies between 5.4 m
(dataset D) and 10.6 m (dataset F).

Exercise 2: Uncertainty characterization
Uncertainty characterization of environmental contours is

a second part of this benchmark. We selected the wave-wind
dataset D for this exercise and ask participants to compute 50-yr
contours based on (a) a 1-yr sample, 8,766 data points, (b) a 5-yr
sample, 43,830 data points and (c) a 25-yr sample, 219,150 data
points. To characterize uncertainty, participants should follow
the uncertainty characterization method based on hindcast data
described by Gramstad et al. [30]. The method can be described
as follows:

1. Set the index, i = 1.
2. Resample Y (1, 5 or 25) years of data from dataset D (result-

ing in sample Oi).
3. Fit the model structure that you used in Exercise 1 to the

sample Oi (resulting in the statistical model Xi).
4. Compute a 50-yr contour with the same method that you

used in Exercise 1 based on the statistical model Xi (result-
ing in environmental contour Ci).

5. If i < 1000: Increase the index i and repeat steps 2-4.

This procedure will lead to 1000 different environmental con-
tours. Then, use these 1000 contours as follows: (i) plot them
in a single figure and (ii) compute a 95% confidence interval.
For the latter, compute the median contour, the 2.5th percentile
contour and the 97.5 percentile contour.

Confidence intervals in two dimensions can be defined in
various ways. For comparability, please construct them as fol-
lows:

1. Set the origin x0 = (x0,v,x0,hs) to be at the mean of dataset
D: x0=(7.95 m s−1, 1.53 m).
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Table 1. OVERVIEW OF THE PROVIDED DATASETS, WHICH ARE AVAILABLE AT HTTPS://GITHUB.COM/
EC-BENCHMARK-ORGANIZERS/EC-BENCHMARK. WE DOWNLOADED THE BUOY DATA FROM HTTPS://WWW.NDBC.NOAA.GOV
AND GATHERED THE HINDCAST SAMPLES FROM THE COASTDAT-2 DATASET [29].

Dataset Data source Site Provided data Retained data Env. contour

A
NDBC 44007
moored buoy

43.525 N 70.141 W
(off Maine coast)

10 years
(82,805 data points) 92,515 data points 1 year Hs-Tz,

20 years Hs-Tz

B
NDBC 41009
moored buoy

28.508 N 80.185 W
(off Florida coast)

10 years
(83,917 data points) 91,403 data points 1 year Hs-Tz,

20 years Hs-Tz

C
NDBC 42001
moored buoy

25.897 N 89.668 W
(Gulf of Mexico)

10 years
(81,749 data points) 93,571 data points 1 year Hs-Tz,

20 years Hs-Tz

D
coastDat-2

hindcast sample
54.000 N 6.575 E

(off German coast)
25 years 25 years 1 year Hs-U10,

50 years Hs-U10

E
coastDat-2

hindcast sample
55.000 N 1.175 E

(off UK coast)
25 years 25 years 1 year Hs-U10,

50 years Hs-U10

F
coastDat-2

hindcast sample
59.500 N 4.325 E

(off Norwegian coast)
25 years 25 years 1 year Hs-U10,

50 years Hs-U10

2. Define a set of lines L = {L j}180
j=1 at angles θ ∈ [0,360deg).

Each line starts at the origin x0 and has an angle θ rela-
tive to the abscissa; θ increases in counter-clockwise di-
rection. Construct lines at θ = atan2[sin(θ ∗)t2,cos(θ ∗)t1]
where t1 and t2 are the ranges of the dataset D’s wind speed
and significant wave height: t1 =29.23 m s−1, t2 =10.57 m,
θ ∗ = {0deg,2deg,4deg,6deg, ...,358deg}.

3. Find the intersections between each contour Ci and each line
L j. This leads to 1000 points of intersection for each line1.
Let III jjj = {I j,i}1000

i=1 be the list of points of intersections that
corresponds to line L j.

4. Order each list of points of intersections by the distance be-
tween the intersection and the origin such that I j,i=1 is the
point that is closest to the origin and I j,i=1000 is the point
that is farthest away from the origin.

5. Construct the P ∈ {2.5,50,97.5}th percentile contour by
connecting all intersections with index i ∈ {25,500,975}.

How to participate
We will officially announce the benchmarking exercise at

the OMAE 2019 conference, in June 2019. Interested partici-
pants can enter the benchmark until March 31, 2020. We plan
to showcase the results in a special session at the OMAE 2021
conference. Optionally, participants may choose to present the
results of their own efforts with the benchmark problem at the

1In cases where one line intersects with one contour at multiple points special
care is necessary. Either use the point of intersection that has the highest distance
to the origin and discard the other points (this procedure is used by the authors)
or define your own procedure and describe it in detail.

OMAE 2020 conference. In summary, the benchmark study will
be announced at OMAE 2019; results from participating teams
may be optionally presented at OMAE 2020 and results of the
benchmark study including all participants’ work will be be pre-
sented at OMAE 2021.

GitHub repository: We will use the repository “ec-
benchmark” that is available at https://github.com/
ec-benchmark-organizers/ec-benchmark as a
hub for the organization of the benchmark. There, partici-
pants will find up-to-date information and can use “Issues”
to openly discuss any questions that may arise.
Provided datasets: The six datasets are available in the
repository’s folder “datasets”.
Submission: Participants must provide CSV files for each
contour. In Exercise 1, only submissions that contain all
twelve contours listed in Table 1 will be considered. CSV
files should use the format that is described in the “ec-
benchmark” repository. Participants of the uncertainty quan-
tification exercise must additionally submit three CSV files
for each of the three cases (1 year data, 5 years data, 25
years data; a total of nine CSV files). In each case, one
CSV file should contain the median contour, one CSV file
the 2.5th percentile contour and one CSV file the 97.5th per-
centile contour. Extensive examples are available at the “ec-
benchmark” repository. One can either participate only in
Exercise 1, only in Exercise 2 or in both.
Optional: To aid in future usage, consider coding your
method in Python and submitting it along with your re-
sults. Then, your work (with proper attribution) will
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Figure 2. UPPER: MAP OF DATASET LOCATIONS. LOWER: SCATTER PLOTS OF THE DATASETS.

be permanently available as open-source software in the
“ec-bechmark” repository. Additionally, if desired, your
code could possibly be integrated into the “viroconcom”
software-package that provides various methods to compute
environmental contours.
How to enter: Submissions must be sent to the email ad-
dress provided at the “ec-benchmark” repository.

BASELINE RESULTS: MODELS & CONTOURS
Methods

To illustrate the benchmark’s methodology and provide
baseline results, we fitted the statistical model structures that

are currently recommended by the certifying organization DNV
GL in their recommended practice DNVGL-RP-C205:2017 [22]
to the six datasets. Consequently, we used a conditional model
structure based on a 3-parameter Weibull distribution and a log-
normal distribution to model the sea states of datasets A, B and
C. Similarly, we used a 3-parameter Weibull distribution and a
2-parameter Weibull distribution for the wind-wave joint model
of datasets D, E and F .

Fitting was performed with the module viroconcom (version
1.2.0) of the software ViroCon [31]. We used a multi-step fitting
approach, similar to that of Li et al. [11]. First, the marginal
distribution was fitted. Second, n distributions for the condi-
tional variable (Tz or V ) were fitted based on n sub-samples, each

6 Copyright c© 2019 by ASME



holding the conditional variable’s values within a specified Hs-
interval. The interval size was 0.5 m and only sub-samples that
held at least 10 data points were considered. Third, the depen-
dence functions were fitted to the parameters of the n distribu-
tions. Marginal distribution fitting (steps 1 and 2) was performed
using maximum likelihood estimation (via viroconcom that uses
the distribution fitting implementation from the Python package
scipy [32]). Dependence function fitting (step 3) was performed
using non-linear least squares (via viroconcom that uses scipy’s
function curve fit).

Then we constructed IFORM contours [9] based on the fitted
models via the implementation in viroconcom. This procedure
led to a baseline for Exercise 1.

Similarly, we provide baseline results for Exercise 2. The
DNV GL model structure was fitted to 1000 bootstrap samples
from dataset D resulting in 1000 statistical models. Then we
constructed 1000 50-yr IFORM contours based on these mod-
els and computed the 95% confidence interval. Note that in the
presentation of these baseline results we do not use the retained
fractions of the datasets (meaning that we used only the subsets
of data that are available to the participants for both, statistical
modelling and in plotting of the results).

Results
Table 2 presents the fitted statistical models. Interestingly,

the fitted dependence functions often had a first coefficient with
value zero (8 of 12 dependence functions). It was zero in all
σ -dependence functions of the lognormal distribution [σ(hs) =
c4 + c5 exp(c6hs); c4 = 0; datasets A, B, C] and zero in all αv-
dependence functions of the 2-parameter Weibull distribution
[αv(hs) = c7 + c8hc9

s ; c7 = 0; datasets D, E, F].
The computed environmental contours capture the data’s de-

pendence structure to some extent (Figure 3). All environmental
contours are exceeded by multiple data points. This is not nec-
essarily expected since the contour’s return period is longer than
the time duration of the sample (20-yr contour vs. 10-yr sample
for datasets A-C and 50-yr contour vs. 25-yr sample for datasets
D-F). All contours except the 20-yr contour based on dataset A
are exceeded at various distinct regions in the variable space. For
example, the 50-yr wind-wave contour of dataset D is exceeded
in regions of high wind speed and medium wave height, regions
of high wind speed and high wave heights and regions of low
wind speeds and low wave heights.

The baseline results for the uncertainty characterization ex-
ercise are presented in Figure 4. As the bootstrap sample’s du-
ration increases from 1 to 5 and finally 25 years, the variability
between the environmental contours decreases. This is apparent
in the overlay plots and in the decreasing width of the confidence
intervals (Figure 4).

Exercise 1’s baseline contours can be reproduced by run-
ning the Python files e1 baseline dataset a to c.py

and e1 baseline dataset d to f.py that are available in
the benchmark’s repository. Similarly, the baseline results for
Exercise 2 can be reproduced with the file e2 baseline.py.

CONCLUSIONS
The proposed comparison exercise is intended first and fore-

most to further the state-of-the-art in modelling the uncertain
metocean environment and in constructing environmental con-
tours by bringing together researchers working in this area. It is
with this goal in mind that we have defined the two exercises de-
scribed in this paper. We hope that the benchmark will result in
increased interest and communication among researchers in this
area.

The proposed benchmark will be limited in a number of
ways. As discussed, the metrics proposed here to aid in the com-
parison do not offer a means for providing any final objective
rankings on contour methods. However, we believe they can pro-
vide some instructive insights that may lead to future research
ideas. Likewise, with the wide variety of methods, each com-
prising many subtle steps that impact the shape of a contour, it
is clear that the exercise will consider only a subset of the many
possible contours that could be derived.
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Table 2. BASELINE STATISTICAL MODELS. THE MODEL STRUCTURE FOLLOWS THE RECOMMENDATIONS IN DNVGL-RP-C205:2017 [22].

Dataset Significant wave height Zero-upcrossing period, log-normal distribution
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Figure 3. BASELINE ENVIRONMENTAL CONTOURS. THE CONTOURS WERE DERIVED FROM STATISTICAL MODELS THAT ARE CURRENTLY
RECOMMENDED (SEE TABLE 2). THE DEFINITION FOR EXCEEDING THE CONTOUR IS BASED ON HYPERPLANES IN THE STANDARD NOR-
MAL SPACE (INVERSE FIRST-ORDER RELIABILITY METHOD). TOP: SEA STATE CONTOURS. BOTTOM: WIND-WAVE CONTOURS. NOTE THAT
DATASETS A, B, AND C CONSIST OF 10 YEARS OF DATA WHILE DATASETS D, E, AND F CONSIST OF 25 YEARS OF HINDCAST DATA.
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Figure 4. BASELINE RESULTS FOR THE UNCERTAINTY CHARACTERIZATION EXCERCISE. 1000 BOOTSTRAP SAMPLES WERE DRAWN FROM
THE HINDCAST DATASET D AND 1000 50-YR ENVIRONMENTAL CONTOURS WERE CONSTRUCTED. THE DATASET CONTAINS 25 YEARS OF
DATA. TOP: PLOTS OF ALL ENVIRONMENTAL CONTOURS THAT WERE DERIVED BASED ON SAMPLES THAT COVERED 1 YEAR (LEFT), 5 YEAR
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