
Proceedings of the 39th International Conference on Ocean, Offshore and Arctic Engineering
OMAE2020

June 28 - July 3, 2020, Fort Lauderdale, Florida, USA

OMAE2020-8219

GLOBAL HIERARCHICAL MODELS FOR WIND AND WAVE CONTOURS: PHYSICAL
INTERPRETATIONS OF THE DEPENDENCE FUNCTIONS

Andreas F. Haselsteiner∗
University of Bremen
Bremen, Germany

Email: a.haselsteiner@uni-bremen.de

Aljoscha Sander
University of Bremen
Bremen, Germany

Email: alsander@uni-bremen.de

Jan-Hendrik Ohlendorf
University of Bremen
Bremen, Germany

Email: johlendorf@uni-bremen.de

Klaus-Dieter Thoben
University of Bremen
Bremen, Germany

Email: thoben@uni-bremen.de

ABSTRACT
Applications such as the design of offshore wind turbines

requires the estimation of the joint distribution of variables like
wind speed, wave height and wave period. The joint distribu-
tion can then be used, for example, to define design load cases
using the environmental contour method. Often the joint distri-
bution is described using so-called global hierarchical models.
In these models, one variable is taken as independent and the
other variables are modelled to be conditional on this variable
using particular dependence functions. In this paper, we propose
to use dependence functions that offer physical interpretation.
We define a novel dependence function that describes how the
median of the zero-up-crossing period increases with significant
wave height and a novel dependence function that describes how
the median significant wave height increases with wind speed.
These dependence functions allow us to reason about the phys-
ical meaning, even when we extrapolate outside the range of a
given sample of environmental data. In addition, we can analyze
the estimated parameters of the dependence function to speculate
which kind of sea dominates at a given site. We fitted statistical
models with the proposed dependence functions to six datasets
and analyzed the estimated parameters. Then we calculated envi-
ronmental contours based on these estimated joint distributions.

∗Address all correspondence to this author.

The environmental contours had physically reasonable shapes,
even at areas that were outside the datasets that were used to fit
the underlying distributions.

INTRODUCTION
Environmental contours are used to define extreme environ-

mental conditions for which a structure such as an offshore wind
turbine can be evaluated. They describe joint extremes of envi-
ronmental variables like wave height, wave period, wind speed
or current. The process of constructing an environmental con-
tour – the environmental contour method – is widely used in the
process of designing offshore structures and standards and guide-
lines like IEC 61400-3-1:2019 [1] and DNV-RP-C205:2017 [2]
recommend the use of the method.

Similar to other important numerical design methods there
exist a variety of different specific environmental contour meth-
ods. Differences can arise due to (i) different environmental
modelling techniques, (ii) different mathematical definitions of
which area in the variable space a contour of a given probabil-
ity should cover and (iii) which algorithms are used to com-
pute a contour. Despite the method’s popularity and much re-
search on it within the last years (for a review, see [3]), common
state-of-the-art environmental contour methods can produce non-
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Figure 1. PROBLEMS APPARENT IN STATE-OF-THE-ART ENVIRONMENTAL CONTOURS AND THEIR STATISTICAL MODELS. (A) SEA STATE CON-
TOURS EXCLUDE HIGH SEA STATES. (B) WIND-WAVE CONTOURS EXCLUDE HIGH WIND AND HIGH WAVE STATES AND FOLLOW AN INCOR-
RECT SHAPE. THE TWO SHOWN CONTOURS (CONTINUOUS LINES) WERE PRESENTED IN A RECENT BENCHMARKING STUDY [4].

conservative contours. A recent benchmarking study [4] that was
co-organized by the first author of this paper, showed such con-
tours. In the study, the authors used joint models for sea states
and for wind-wave states that are recommended in current engi-
neering guidelines and intentionally applied them without check-
ing whether the models were appropriate for the particular off-
shore site. As the fitted joint distributions did not catch the data
structure properly, environmental contours based on these dis-
tributions had incorrect shapes (Fig. 1): The sea state contour
predicted sea states with too low significant wave height and the
wind-wave contour described an incorrect shape.

Most joint distributions that are used to describe the meto-
cean environment are not based on physical models. For ex-
ample, the marginal distribution of the significant wave height
is sometimes modelled with a 2-parameter Weibull distribution
[5], a 3-parameter Weibull distribution [6], a gamma distribution
[7] or a hybrid lognormal-Weibull distribution (‘Lonowe model’)
[8] and there is no physical model that supports the use of a
particular distribution. Similarly, the dependence structure be-
tween the metocean variables does not offer physical interpreta-
tion. In global hierarchical models, joint distributions are built
up using conditional parametric distributions. For example, sig-
nificant wave height, Hs, might be modelled with a marginal
3-parameter Weibull distribution and wind speed, V , with a 2-
parameter Weibull distribution whose parameters depend on the
value of Hs. Then so-called dependence functions are used,
which in the given case might be αV (hs) = c1 + c2hc3

s where
αV represents the wind distribution’s scale parameter. Such a
dependence function might fit well to a particular dataset, how-
ever, it does not provide direct physical insights. As one cannot
physically interpret such a dependence function, reasoning how
well a particular fitted dependence function extrapolates outside

a dataset could be called statistically informed guessing.
This work was motivated by the potential advantages that

dependence functions that can be interpreted physically might
have. Much is known about how winds and waves behave: how
wind generates waves, when waves break and how wind sea and
swell mix. If we can utilize this knowledge in the formaliza-
tion of the joint model of environmental variables we should be
able to design models that extrapolate better and whose parame-
ters can be interpreted physically. In this paper, we will design a
novel dependence structure for the joint distribution of significant
wave height and zero-up-crossing period, Hs−Tz, and a novel de-
pendence structure for wind speed and wave height, V −Hs. We
will focus on using physically interpretable expressions that de-
scribe how Tz depends on Hs and how Hs depends on V . Then,
we will estimate the parameters of these distributions by fitting
the models to six datasets describing metocean conditions in the
Atlantic and in the North Sea. Finally, we will compute environ-
mental contours based on the fitted joint distributions.

DATA AND METHODS
Datasets

To test our models, we used six datasets: three datasets that
describe sea states (Hs-Tz, datasets A, B, C) and three datasets
that describe wind-wave states (V -Hs, datasets D, E, F ; Tab. 1).
These datasets were provided in a recent benchmarking study on
estimating extreme environmental conditions [4] and are avail-
able at a GitHub repository1. Datasets A, B and C are from
buoys of the National Data Buoy Center [9] and cover 10 years
of hourly sea states. Datasets D, E and F were retrieved from

1https://github.com/ec-benchmark-organizers/
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the hindcast coastDat-2 [10] and cover 25 years of hourly wind
and wave data. The wind data represent a 10-minute mean value,
measured 10 m above sea level.

Table 1. USED DATASETS.

Dataset Variables Site Data source

A Hs, Tz off Maine coast buoy 44007 [9]

B Hs, Tz off Florida coast buoy 41009 [9]

C Hs, Tz Gulf of Mexico buoy 42001 [9]

D V , Hs off German coast hindcast [10]

E V , Hs off UK coast hindcast [10]

F V , Hs off Norwegian coast hindcast [10]

Global hierarchical models
Global hierarchical models are probabilistic models that

cover the complete range of an environmental variable (’global’)
and which follow a particular hierarchical dependence structure.
In a global hierarchical model, if the joint density function is fac-
torized, simple terms for the univariate density functions exist.
Let X1 and X2 represent random variables, for example X1 = V
and X2 = Hs, and let fX1,X2(x1,x2) represent its joint density
function. Then the factorization

fX1,X2(x1,x2) = fX1(x1) fX2|X1(x2|x1) (1)

describes a hierarchy where a random variable with index i can
only depend upon random variables with indices less than i. Usu-
ally, simple parametric distributions are assumed for the random
variables and the dependence of X2 under X1 is modelled using
simple dependence functions with 2-4 parameters (see, for ex-
ample, [11, 12]). Let α2 and β2 represent the parameters of the
second distribution. Then these parameters might be modelled
with dependence functions with n parameters:

α2 = fα(x1;c1,c2, ...,cn),

β2 = fβ (x1;c1,c2, ...,cn).
(2)

Typical expressions are a power function, fα(x1) = c1+c2xc3
1 , or

an exponential function, fα(x1) = c1 + c2ec3x1 [2].
We assumed the following model for sea states: Significant

wave height follows an exponentiated Weibull distribution and
zero-up-crossing period follows a log-normal distribution that

depends on the value of Hs. The exponentiated Weibull distri-
bution has been recently proposed to model Hs [13] and the log-
normal distribution is a usual choice for modelling Tz|Hs. The
two distributions read

F(hs) =
(

1− exp
[
−(hs/α)β

])δ

,

F(tz|hs) =
1
2
+

1
2

erf
(

ln tz−µtz√
2σ2

)
.

(3)

We modelled the log-normal distribution’s parameter µtz
with a two-parameter dependence function:

µtz = ln

(
c1 + c2

√
hs

g

)
, (4)

where g is the gravity constant, g = 9.81 m s−2 and c1 and c2
are parameters that will be estimated. The parameter µtz can
be directly related to the period’s median, t̃z = eµtz . Thus, the
dependence function implies

t̃z = c1 + c2

√
hs

g
, (5)

which is an expression that is physically consistent as [t̃z]= s,
[hs]= m and [g]= m s−2 if [c1]= m and c2 is unitless. The pa-
rameter σtz is modelled with an asymptotically decreasing de-
pendence function:

σtz = c3 +
c4

1+ c5hs
. (6)

For the wind-wave joint distribution the following model
is assumed: Wind speed follows an exponentiated Weibull dis-
tribution and significant wave height follows an exponentiated
Weibull distribution that is conditional on the value of V :

F(v) =
(

1− exp
[
−(v/α)β

])δ

,

F(hs|v) =
(

1− exp
[
−(hs/αhs)

βhs
])δhs

(7)

The Weibull distribution is a typical choice for both, wind speed
and wave height. However, usually wave height is modelled
with a translated Weibull distribution and wind speed with a 2-
parameter Weibull distribution that depends on the value of Hs
(see, for example, [2, 4]) instead of the exponentiated Weibull
distribution.
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We model the dependence structure between the two vari-
ables by assuming that the median of Hs increases with wind
speed and that the shape parameter βhs follows a logistics func-
tion:

h̃s = c6 + c7vc8 ,

βhs = c9 +
c10

1+ e−c11(v−c12)
.

(8)

The exponent of the exponentiated Weibull distribution is set to
δhs = 5 such that the dependence function for the scale parameter
αhs reads

αhs = (c6 + c7vc8)/2.04451/βhs . (9)

This structure has the advantage that the relationship between
typical (median) wave height values and wind speed values is
modelled with a simple expression that can be interpreted phys-
ically. The estimated exponent c8 might imply that h̃s increases
linearly, quadratically or something in between with increasing
wind speed and its value can be compared with theories on wind-
generated seas (see, for example, [14])

Parameter estimation and contour computation
The eight parameters of the sea state model and the ten pa-

rameters of the wind-wave model were estimated by fitting the
described model structure to each of the datasets. All compu-
tations were performed using the open-source Python software
viroconcom in version 1.3.9 [15].

We fitted the sea state model by following a step-wise pro-
cess: First the marginal distribution of Hs was fitted by using a
weighted least squares method that prioritizes high quantiles of
Hs (for details, see [13]). Second, zero-up-crossing period was
sorted into Hs intervals. We used an interval size of 0.5 m. Third,
marginal distributions were fitted to zero-up-crossing period in
each interval that held at least 50 data points using maximum
likelihood estimation. Finally, the dependence functions were
fitted using nonlinear least squares.

Similarly, the parameters of the wind-wave models were es-
timated following a step-wise process: The marginal distribu-
tions of V and Hs were fitted using a weighted least squares
method [13]. The interval size was 2 m s−1 and the required num-
ber of datapoints within each bin was set to 50 as well. The de-
pendence functions were fitted using nonlinear least squares with
weights of 1 / parameter value such that errors were normalized.

The resulting six joint distributions were used to compute
highest density environmental contours. A highest density con-
tour is one possible definition for an environmental contour [16]
that in principle can also be used for setting design requirements

of non-environmental variables [17]. It is based on the statisti-
cal concept of the highest density region [18]. A highest den-
sity contour, C, encloses a highest density region, R, that holds
probability 1−α . As the border of a highest density region has
constant probability density, the contour can be expressed as the
set of all environmental states x whose probability density equals
the density value fc:

C(α) = {x ∈ Rd : f (x) = fc}. (10)

The challenge of constructing such a contour lies in computing
the density value fc that corresponds to a particular exceedance
probability α . In any environmental contour method, the ex-
ceedance probability α relates to the return period of interest as

α =
TS

TR
, (11)

where TS is the environmental state duration and TR is the return
period of interest. In this study, we considered two-dimensional
environmental states: either sea states, x = (hs, tz), or wind-wave
states, x = (v,hs).

As prescribed in a recent benchmarking exercise [4], we
computed 1-year and 20-year environmental contours with our
sea state models and 1-year and 50-year contours with our wind-
wave models. The scripts that were used to fit the joint distri-
butions and to compute the contours are available at a GitHub
repository2.

RESULTS
Statistical models: Dependence functions

Table 2 presents the estimated parameters of the statistical
models. The fitted sea state models have common characteris-
tics, which can be derived from the estimated parameter values
(Figure 2). The dependence functions for the parameter µtz im-
ply a relationship between Tz and Hs of

t̃z(hs) = [2.7, 3.6] s+[5.3, 6.5]
√

hs/g, (12)

where values within the brackets hold the lowest and highest pa-
rameter values among the three datasets. For high sea states,
hs = 10 m, these dependence functions predict t̃z = {9.5 s, 8.9 s,
9.3 s} for datasets A, B and C, respectively. Visually compar-
ing these predicted sea states with the datasets suggest that the
dependence functions are reasonable (Figure 8).

2https://github.com/ahaselsteiner/
2020-paper-omae-hierarchical-models
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Table 2. FITTED STATISTICAL MODELS.

Dataset Significant wave height Zero-upcrossing period, log-normal distribution

Exponentiated Weibull distribution µtz(hs) = ln
(

c1 + c2

√
hs

g

)
σtz(hs) = c3 +

c4

1+ c5hs

α (scale) β (shape) δ (shape) c1 c2 c3 c4 c5

A 0.207 0.684 7.79 3.62 5.77 0 0.324 0.404

B 0.0988 0.584 36.6 3.54 5.31 0 0.241 0.256

C 0.227 0.697 9.85 2.71 6.51 0.109 0.147 0.236

Wind speed Sig. wave height, exp. Weibull distribution with δ = 5

Exponentiated Weibull distribution αhs(v) = (c6 + c7vc8)/2.04451/βhs(v) βhs(v) = c9 +
c10

1+ e−c11(v−c12)

α (scale) β (shape) δ (scale) c6 c7 c8 c9 c10 c11 c12

D 10.0 2.42 0.761 0.488 0.0114 2.03 0.714 1.70 0.304 8.77

E 10.8 2.48 0.683 0.617 0.0174 1.87 0.724 2.01 0.309 9.59

F 11.5 2.56 0.534 1.09 0.0251 1.80 0.726 1.89 0.194 13.4

These dependence functions can also be used to analyze
what they imply for steepness. Steepness, s, is a non-dimensional
variable that describes a sea state [14, p. 88]:

s =
2πhs

gt2
z
. (13)

Using our expression for t̃z, we can derive a model for the ex-
pected median steepness, s̃:

s̃ =
2πhs

g(c1 + c2
√

hs/g)2
. (14)

A plot of steepness over significant wave height suggests that the
predicted median steepness is reasonable (Fig. 3). Interestingly,
the used datasets contain many datapoints whose steepness ex-
ceeds 1/15, which is sometimes seen as an upper limit due to
wave breaking (see, for example, [14, p. 88]).

Similarly, the dependence functions of the fitted wind-wave
models show similarities among the three datasets and can be
physically interpreted (Figure 5). The median of significant wave
height increases with wind speed in the following manner:

h̃s = [0.5, 1.1]m+[0.011, 0.025]v[1.8,2.0], (15)

where values within the brackets hold the lowest and highest co-
efficient values among the three datasets. This suggests that there
are two parts to significant wave height: one part that is indepen-
dent of local wind speed and that is in the order of 1 m and one

part that increases with wind speed, where the increase is more
than linear, but at two sites also less than quadratic. The first
part could be interpreted as either a swell component or as waves
that were generated locally, but in the past. The second part is
especially interesting as it might offer insights into the nature
of the sea state. The found exponents between 1 and 2 lie be-
tween the limits of two different kind of seas: In fully-developed
wind-generated seas that follow a Pierson-Moskowitz spectrum,
significant wave height quadratically increases with wind speed
[19, p. 35]. In seas, which are not fully developed, significant
wave height might increase linearly (if they are fetch-limited) or
with v9/7 if they are duration-limited [20, p. 360].

Exponentiated Weibull distribution
The exponentiated Weibull distribution is a novel distribu-

tion choice for sea state models and for wind-wave models. The
marginal distribution of Hs was modelled well with the exponen-
tiated Weibull distribution and a detailed analysis on its goodness
of fit for datasets A, B and C was presented in a recent publication
by this paper’s first author [13].

In the wind-wave models, we used the exponentiated
Weibull distribution to model the marginal distribution of wind
speed. Usually, a 2-parameter Weibull distribution is used
instead, which is an exponentiated Weibull distribution with
δ = 1. Thus, thanks to its additional parameter, an exponentiated
Weibull distribution will fit any dataset at least as good as a 2-
parameter Weibull distribution. However, the additional parame-
ter adds complexity and thus its use over the 2-parameter Weibull
distribution should be justified. The distribution of wind speed
in datasets D and E can be described well with a 2-parameter

5 Copyright c© 2020 by ASME



Figure 2. FITS OF THE SEA STATE MODEL. THE DEPENDENCE FUNCTION OF µtz IS DESIGNED SUCH THAT THE MEDIAN OF THE ZERO-UP-
CROSSING PERIOD INCREASES WITH

√
hs/g WHERE hs REPRESENTS SIGNIFICANT WAVE HEIGHT AND g REPRESENTS EARTH’S GRAVITY

CONSTANT.

Weibull distribution, however, in dataset F the data do not follow
a 2-parameter Weibull distribution at high wind speeds (Fig. 4).
A fitted 2-parameter Weibull distribution would predict too high
wind speeds in dataset F while a fitted exponentiated Weibull
distribution can follow the shape of the empirical distribution and
thus can predict wind speeds better (Figure 5 left)

Finally, we used the exponentiated Weibull distribution to
model the distribution of significant wave height within given

wind speed intervals. To keep model complexity – measured in
numbers of free parameters – in balance, we used an exponen-
tiated Weibull distribution with a fixed exponent of δ = 5. This
choice was based on first fitting exponentiated Weibull distribu-
tions with free exponents to binned wave data. We found that
δ varied between 2 and 23 and that it followed a bell-like curve
(Figure 6). Based on these results we decided to set δ = 5 and
to fit these fixed-exponent distributions again such that we would

6 Copyright c© 2020 by ASME



Figure 3. THE DEPENDENCE FUNCTION THAT DESCRIBES HOW
ZERO-UP-CROSSING PERIOD CHANGES WITH WAVE HEIGHT CAN
BE USED TO DERIVE THE PREDICTED RELATIONSHIP FOR THE ME-
DIAN OF STEEPNESS AS A FUNCTION OF WAVE HEIGHT.

Figure 4. IN DATASET F WIND SPEED DOES NOT FOLLOW A TWO-
PARAMETER WEIBULL DISTRIBUTION AT HIGH QUANTILES.

get the parameter values of α and β that lead to the best fit with
δ = 5.

The exponentiated Weibull distributions with δ = 5 showed
good model fit at all wind speed intervals (Fig. 7). Plotting
the distribution on Weibull paper illustrates that a 2-parameter
Weibull distribution is insufficient to describe the empirical dis-
tribution. The second shape parameter of the exponentiated
Weibull distribution, δ = 5, however, enables the distribution to
follow the shape of the data. These results suggest that if data do
not indicate otherwise, conditional significant wave height data
should be assumed to follow an exponentiated Weibull distribu-
tion.

Environmental contours
Both, the sea state and the wind-wave contours seem to catch

the two-dimensional structure of the datasets (Figure 8). Simi-
lar to the observations, the contours of dataset A and B have a
triangular-like shape. Dataset C does not hold sea states with
long periods, but low intensity and consequently the contours
of dataset C do not have a triangular-like shape. In dataset A
the 20-year contour includes all observations of the 10-year long
dataset. In dataset B the 20-year contour excludes 30 datapoints
and in dataset C the contour excludes 6 datapoints.

While the shapes of the contours of dataset D and F look
reasonable overall, the 50-year contour of dataset E has a ques-
tionable region at low wind speeds: The 50-year contour pre-
dicts slightly higher sea states at v = 1 m s−1 than at v = 5 m s−1.
While the 50-year contour of dataset F includes all observations
of the 25-year long dataset, the contours of datasets D and E both
exclude 2 datapoints.

CONCLUSIONS
In this paper, we showed how joint models of Hs− Tz and

V −Hs can be designed such that the dependence function of the
conditional variable offers physical interpretation. We modelled
the median of the zero-up-crossing period to increase with

√
hs

and the median of the significant wave height to increase with
vc where the exponent c was estimated to be between 1.8 and 2.
The relationship t̃z ∝

√
hs ensures that the wave period increases

in an interpretable physical manner and the relationship h̃s ∝ vc

offers insights into which kind of sea the joint distribution de-
scribes. Finally, we computed environmental contours based on
these joint distributions. Overall, the environmental contours had
reasonable shapes and contours with long return periods extrapo-
lated in a physically interpretable manner: They behaved similar
to the relationships of the median period conditional on wave
height, T̃z|Hs, and of the median wave height conditonal on wind
speed, H̃s|V , that were expressed in the fitted dependence func-
tions.
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Figure 5. FITS OF THE WIND-WAVE MODEL. THE DEPENDENCE FUNCTION OF THE SCALE PARAMETER, αhs, IS BASED ON THE MEDIAN OF
SIGNIFICANT WAVE HEIGHT, h̃s, WHICH IS MODELLED AS h̃s = c6 + c7vc8 WHERE v REPRESENTS WIND SPEED.

Figure 6. ESTIMATES FOR THE SECOND SHAPE PARAMETER, δhs, OF THE EXPONENTIATED WEIBULL DISTRIBUTION AT DIFFERENT WIND
SPEED INTERVALS. ALTHOUGH THE EXPONENT CHANGES, IN OUR MODEL, WE SET δhs = 5 TO REDUCE MODEL COMPLEXITY.

8 Copyright c© 2020 by ASME



Figure 7. WEIBULL PROBABILITY PLOTS FOR SIGNIFICANT WAVE
HEIGHT AT DIFFERENT WIND SPEEDS FOR DATASET E . THE EXPO-
NENTIATED WEIBULL DISTRIBUTION WITH δ = 5 DESCRIBES THE
DATA BETTER THAN A 2-PARAMETER WEIBULL DISTRIBUTION.THE
OTHER DATASETS SHOWED SIMILAR BEHAVIOR.
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