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ABSTRACT

Single blade installation presents a significant challenge in
the installation of offshore wind turbines. The stochastic nature
of wind speed and wave height lead to uncertainties during in-
stallation. Blade installation is especially difficult in the pres-
ence of large relative motions between the blade root and the
hub of the nacelle. In a measurement campaign, the installation
of the Trianel Windpark Borkum Il wind farm was analyzed to
better understand installation difficulties. Sensor boxes recorded
acceleration and GPS signals. In the study presented here, the
oscillating behavior of the tower and the single blade installa-
tion tool (SBIT) before the first contact with the tower based on
the data of the measurement campaign was described. Statistical
models were developed to investigate how turbine and tool move
conditional on wind and wave parameters. These statistical mod-
els describe the maximum deflection in blocks of 1 minute condi-
tional on wind and wave parameters. The 1 minute block maxima
are represented by a generalized extreme value distribution. We
found that the oscillations of the tower are much higher than the
oscillations of the SBIT. Thus, they seem to determine the process
of the single blade installation. The developed model for tower
motion maxima uses wind speed and significant wave height as
covariates. While these relationship explain some of the vari-
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ability of observed motion maxima, much uncertainty remains,
which cannot be explained by correlations with wind speed and
wave height. Nevertheless, we hope that the turbine’s model can
be used to improve the quality of the decision of whether current
environmental conditions are suitable to install the rotor blade
or whether one should wait for better weather.

INTRODUCTION

Various factors have been pushing the growth of the renew-
able energy sector. The European Commission predicts that on-
shore and offshore wind energy together will account for half of
Europe’s electricity by 2050 with a capacity rising from 220 GW
today up to 1,300 GW [1]. In the past years the limited space
on land, the competing site usage, the less general environmen-
tal impact, and the higher wind resource offshore stimulated the
technology of offshore wind energy [2]. The constantly increas-
ing size of wind turbines are an efficient and economical choice
from an operational point of view, however this involves higher
challenges and risks during the transportation and installation of
these turbines [3]. The components of a wind turbine, especially
the rotor blades are very sensitive and small damages can lead to
high costs. Any damage to the root connection implicates bring-
ing the lifted rotor blade back to the deck of the installation ves-
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sel. A delay in the installation task causes the loss of favorable
weather windows and thus high financial cost due to a longer uti-
lization of the installation vessel. Hence, during transportation
and installation, a high precision is required.

The possibilities to carry out research during offshore wind
turbine (OWT) installation are rare. This is due to the limited
access to offshore wind farms and the linked costs. Hence, only
a few on-site experiments investigating the process of the instal-
lation have been conducted (e.g. [4], [5] [6] [7]). The study of
Oelker et al. (2021), showed that a tuned mass damper could be
a cost-effective tool to improve the process of single blade instal-
lation in general [7]. Generally, different installation concepts of
OWTs exist and different pre-assembly strategies are described
in the literature, e.g. “rotor-star” or “bunny-ear’” assembly [8] [9]
[7]. Among the commonly used installation methods for offshore
wind turbines, the single blade installation was most frequently
used in recent years, due to small deck space requirement and
flexible blade orientations during installation [10]. The numeri-
cal studies of Verma et al. (2019) [11], Jian et al. (2018) [12],
Verma et al. (2021) [13] and Ren et al. (2018) [14] investigated
the behavior of the turbine during single blade installation nu-
merically. In these studies, it was found that wind-induced loads
dominate the motions of the blade and wind- and wave-induced
loads dominate the motions of the tower. These factors signif-
icantly limit the installation of blades [11] [12] [13] [14]. The
blade landing process can be challenging if large relative mo-
tions appear between the blade root and the hub of the nacelle.
Verma et al. (2019) [11] presented a probability-based method-
ology to assess limiting sea states for single blade installation
using response-based criteria. In the following, this serves as an
inspiration for the task of this study. In the publication of Verma
et al. (2019) [11], the allowable sea states for the mating phase
of blade and hub are estimated. An extreme value analysis of the
limiting response parameter has been performed.

Sander et al. (2020) found, that tower vibrations of partially
installed turbines can be well described as a sequence of evolving
ellipses [5]. In a novel experiment a torsional coupling mecha-
nism linking motions in the fore-aft and side-side direction was
presented which explains the formation of orbits that change its
direction [15]. In latest research, it has been found that the tower
oscillations and the resulting deflections determine whether the
blades can be mounted. The influence of the SBIT movements
has not been further considered and it is assumed that the turbine
dominates the installation procedure [5] [6]. However, yet, no
study has proven that motion maxima of the SBIT do not influ-
ence the success of the installation. Furthermore, it is unclear
how motion maxima of both the tower and the SBIT change with
environmental conditions. Thus, it is difficult to plan the instal-
lation of offshore wind turbines precisely.

Based on measured accelerations of the blade lifting device
and the turbine’s nacelle during a measurement campaign of the
wind farm Trianel II [5] [6] in combination with the environ-

mental conditions wind speed (V') and wave height (H,), we now
seek to determine the exact behavior of the SBIT and tower dur-
ing installation. Here, we pursue the approach of a statistical
model describing the motion maxima of the tower and SBIT dur-
ing single blade installation conditional on wind speed and wave
height. We aim to enable better planning of the offshore op-
eration through a statistical model of the turbine’s and SBIT’s
deflection during installation. The model describes motion max-
ima of “independent sequences” of turbine and SBIT oscillations
meaning that we only consider time series before any collisions
occurred. Based on these independence sequences, statistical
models of the environmental conditions and the turbine response
are developed in order to predict the turbine dynamics during in-
stallation.

DATA AND METHODS
Datasets

As part of a measurement campaign, the installation of the
Trianel Windpark Borkum II wind farm was measured to better
understand the installation difficulties. During this measurement
campaign, sensor boxes were installed on various components
of the wind turbines during installation, including on the blade
lifting device used for single blade installation. During each in-
stallation, one sensor box was placed at the helicopter hoisting
platform of the turbine and two other boxes were placed at the
SBIT tip and SBIT root (figure 1). These sensor boxes recorded
acceleration and GPS signals. The technical specifications of the
turbines and the measurement boxes are published in Sander et
al. (2020) [5] [6]. Additionally, a LIDAR (light detection and
ranging device) installed on the installation jack-up unit, pro-
vided wind field measurements and a wave buoy close to the in-
stallation site collected wave data including e.g. significant wave
height, peak period and wave direction [6].

In figure 2 the environmental data set which will be used in
this study is compared to a metocean data set used in a recent
benchmark study on estimating offshore environmental condi-
tions [16]. All metocean data sets used in the benchmark study
show the characteristic dependency of the wave height on the
wind speed as presented in figure 2. The environmental data set
used in the subsequent analyses does not exhibit these character-
istics. The measurement data set only seems to represent a frac-
tion of the typical wind speed-wave height space. However, it is
found that even if the data set does not follow the typical depen-
dency, it does represent the lower wind speeds and wave heights
of the metocean data set. This is explicable with the restricted
selection of environmental conditions during the installation of
the rotor blades.
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SBIT movements
dependent on
environmental conditions,
independent on tower’s
oscillations.

Tower oscillations
dependent on
environmental conditions,
well described by ellipses.

FIGURE 1. Single blade installation at wind farm Trianel II altered
after Sander et al. (2020) and Sander et al. (2020a) [6] [5]. S1 and S2
are the two sensor boxes that were used to track the motions of the tower
and the single blade installation tool (SBIT).
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FIGURE 2. Scatter plot comparing the wind speed and wave height
measured during the installation of the Trianel Windpark Borkum II
wind farm to environmental data recently used in a benchmark study
on estimating offshore environmental conditions [16].

Data availability

For this study, we created an own zenodo repository, where
the utilized and processed data sets of the measurement cam-
paign together with our codes are published open access [17].
The original data recorded during the installation of the Trianel
Windpark Borkum II wind farm are published open access on
another zenodo repository [18].

Independent oscillations

We consider only “independent oscillations” for our model
that represent the state when the blade is lifted to the height of
the nacelle but no contact between blade and nacelle occurred
yet. The end of an independent oscillation could be either the
successful blade landing or an impact event of SBIT and tower.
Since most installation attempts do not proceed straightforward
without any impact, the end of an independent oscillation usu-
ally is an impact of SBIT and tower. Hence, the first independent
time sequence lasts from the start of the installation until the first
impact. Knowing the blade landing times from the previous work
of Holman (2021) [19], the individual installation periods of the
rotor blades can be identified. Here, we define an individual in-
stallation period as the time from the start of installation (SBIT
at hub height) until the successful mounting of the blade to the
hub. Then, by identifying the impact events, the independent
oscillation sequences can be determined. Due to the aerodynam-
ically designed structure of the rotor blade and the SBIT (figure
1), environmental and impact loads cause pendulum oscillation
motions at the blade root during the installation task [11]. To
distinguish an impact event from a measurement error or a colli-
sion of the SBIT while being stored at the deck of the installation
vessel, three general conditions need to be fulfilled:

1. The SBIT is at hub height. This condition ensures that the
installation process has started.

2. The impact event has to last a certain time, to avoid counting
measurement errors as impacts.

3. Between two consecutive impact events, there has to be a
certain time difference. This condition ensures that the im-
pact events do not correlate with each other.

4. The fourth and exclusive condition to identify an impact is
the acceleration threshold above which impacts are distin-
guished from regular SBIT motions.

To determine the acceleration thresholds, we chose a simple
approach and analyzed the time series of the SBIT acceleration
of 3 turbines in x-, y-, and z-direction visually and tested differ-
ent acceleration limits. Then, another algorithm has been devel-
oped that determines the independent oscillations by comparing
the list of impact events with the installation period. The follow-
ing conditions have to be fulfilled to clearly define independent
sequences:

1. The impact event needs to be within the installation period
of the blade.

2. The first impact event has to be further in time than the begin
of the installation attempt.

3. The first impact has to be the first in a series of impact events
after the begin of the corresponding installation period.

Reflecting on the impact algorithm it can be said, that it failed
to identify all moments in time where the rotor blade and tower
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have been connected to each other. As a consequence, we man-
ually filtered the data set a second time to ensure an independent
data set of SBIT and tower oscillations and environmental con-
ditions.

Extreme event extraction

Here, we are interested in maxima — extremes — of the de-
flection (d) time series (figure 4). These large displacements
from the the origin of the tower and the SBIT are caused by envi-
ronmental phenomena and could evoke an interruption or failure
of the installation process. Extremes of subsamples (blocks) of
a data set can be described with the generalized extreme value
distribution [20] [21]:

exp(—exp(—%)

F(x) = exp(—(l+§x6”)l/ (1)

To determine the statistical distribution of extreme events,
the peaks in the data have to be identified. Given the case that
the stochastic process is time correlated, it needs to be assured
that each peak corresponds to an independent extreme event. In
this study, we applied the block maxima method. A straight-
forward approach to filter out independent peaks in a data set
is to make sure that the time difference between selected peaks
is sufficient. When applying the block maxima method with a
sufficiently wide block length, this criterion is fulfilled [22]. Ap-
plying this method, the data set is divided into a set of sequences
(blocks) of equal length. Then, the largest peak of each block is
extracted. When it cannot be assured that the data points are un-
correlated, an additional condition needs to be fulfilled to make
sure that the peaks are uncorrelated. A common method is to
make sure that the time difference between the peaks is greater
than the autocorrelation length. Fogle et al. (2008) found that
the maxima of 40 — 60 seconds blocks can be considered inde-
pendent when analyzing wind turbine load responses [23].

The short-term turbine response during the installation will
be described by the individual peak deflections of the SBIT and
tower (djqac). The time series of deflections will form 1-minute
blocks of which block maxima will be described (see figure
4). This results in the short-term dynamics described by several
blocks which contain the motion maxima. These block maxima
have less serial correlation and will be described with a statistical
model.

Figure 3 shows the distribution of the block maxima of the
SBIT and the tower as well as the considered environmental con-
ditions. Generally, it is found, that neither parameter strongly
correlates with another parameter. Hence only part of the vari-
ability of motion maxima during installation can be explained
by correlations with wind speed and wave height. Note, that this

TABLE 1. Overall linear correlation (correlation coefficient r) be-
tween environmental parameters and the peak deflection of SBIT and
tower.

Linear correlation V H; diower  dsBIT
Wind speed 1 0.078 0.205 0.148
Wave height 0.078 1 0.096 0.247
Tower deflection ~ 0.205 0.096 1 0.095

SBIT deflection 0.148  0.247  0.095 1

phenomenon adds uncertainty to the statistical models developed
in this study. Table 1 shows the linear correlation coefficients of
the tower’s and SBIT’s peak deflections.

Statistical model of motion maxima

The statistical approach in this work is inspired by the envi-
ronmental model in the work of Mackay et al. (2020) [24] and
the response model in the work of Haselsteiner et al. (2021) [25].
We model the distribution block maxima and how they depend
on environmental variables using parametric dependence func-
tions. Then we develop two separate statistical models since we
analyze the deflections of the tower and the SBIT individually.
Consequently, the two statistical models presented here describe
the response of the tower and the SBIT conditional on the envi-
ronmental variables wind speed and wave height. That implies
for given environmental conditions, the deflection of the SBIT
and tower can be determined.

RESULTS AND DISCUSSION
Statistical model of the SBIT’s motion

For our model the response of the SBIT during single blade
installation, we assumed, that the oscillations of the SBIT are
only conditional on wind parameters. Calculating the linear cor-
relation coefficient between wind speed and deflection resulted
in r = 0.148 (table 1). Hence, interpreting this correlation co-
efficient, it can be said, that the linear relationship between the
SBIT’s peak deflection and the wind speed is rather week. Never-
theless, when analyzing the lowest scatter points in figure 5, one
could suppose that the minimum peak deflections are increasing
linearly with the wind speed.

Calculating the correlation coefficient of the minimum peak
deflection and intervals of the 1-minute mean wind speed re-
sulted in r,,;;, = 0.764. While the correlation coefficient of all
peak deflections and wind speed indicates a weak correlation,
this correlation coefficient points at a rather high linear correla-
tion (figure 5). Nevertheless, the suspected linear dependency be-
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FIGURE 3. Scatter plot matrix of the peak deflections of SBIT and tower and the corresponding environmental conditions.

tween minimum peak deflection and wind speed is not sufficient
to describe the behavior of the SBIT during single blade installa-
tion. Especially the highest peak deflections are scattered which
increases the uncertainty and the complexity of modelling the
dependency (figure 5). In general, there are two possible ways
to interpret the results presented above. The first interpretation
would confirm the assumption of the SBIT’s oscillations not be-
ing strongly dependent on the wind speed. A statistical model
of the SBIT’s deflections conditional on the wind speed would
thus have little significance. The second interpretation would
imply questioning the reliability of the applied impact identifi-
cation algorithm. Probably, the highest peaks in the deflections,
that are causing the highly scattered values at low and medium
wind speeds are impact events that have not been detected by the
impact algorithm.

Calculating the linear correlation between the individual pa-
rameters of the GEV distribution and the wind speed showed that

TABLE 2. Comparison of the correlation between the different pa-
rameters of the GEV distribution describing the motion maxima of the
SBIT and the wind speed.

Correlation coefficient

Shape ¢ 0.597
Location p 0.476
Scale ¢ —0.534

the shape, location and scale parameters and the wind speed are
medium linearly correlated (table 2).
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FIGURE 4. The models use maxima of 1-minute blocks of the deflection.

8 == = |inear fit
Peak independent deflections
Max deflection per interval
® Mean deflection per interval
X Min deflection per interval

Independent peak deflection(cm)

4-
® ®
@
34 o o °
® X
24 ® ! @ ® x_*—‘
—
4 —
1 ——— 5 x X
0 2 4 6 8 10

1- min mean windspeed (m/s)

FIGURE 5. Minimum peak deflections of the SBIT over the 1-minute
mean wind speed.

SBIT motion conditional on wind speed Here, we
present a statistical model which consists of the SBIT’s response
during installation and the environmental variable wind speed.
Although the correlation coefficients presented in table 2 are
not indicating a strong linear dependency, we fitted simple lin-
ear functions to the intervals of wind speed and the parameters
of the GEV distribution. Figure 5 suggests that the deflection
of the SBIT increases with the wind speed. Thus, it seems to
be physically reasonable that the distribution of the deflection
is shifted with increasing wind speeds. Therefore, we assume,
that the location parameter, which is responsible for the shift of
a distribution, increases linearly with the wind speed. To keep
model complexity low, we decided to use the fixed values of the

global GEV distribution, which have been calculated above for
the shape and scale parameter ({ = —0.143 and 6 = 0.697). The
location parameter of the statistical model of the SBIT’s response
is described by a linear function of the wind speed:

n(v) =av+ay @)

The parameters are estimated to be a; = 0.089 and a; = 1.676
by using the method of least squares and the python package
virocon [26]. Consequently, the statistical model of the SBIT’s
deflection consists of two fixed values for the shape and scale
parameters of the GEV distribution and two parameters resulting
from the linear dependency of the location parameter and the
wind speed.

Analyzing the model quantitatively, different quantiles of
the measurement data and the statistical model are compared
(figure 6). It is found that the model represents the deflection
of the SBIT fairly reasonable. Excluded from this observation
is the drop of deflections at wind speeds around 4 — 8 m/s, when
analyzing the 90 th percentile of the data. Additional research is
necessary, investigating this phenomenon.

With the statistical model for the SBIT’s response, it is pos-
sible to make a statement of the expected deflections of the SBIT
for different wind speeds. Nevertheless, one needs to take into
account that modeling the location parameter as a linear function
of the wind speed and including this function into the statistical
model involves uncertainty, since the correlation coefficient only
indicates a medium linear correlation between the location pa-
rameter of the GEV distribution and the wind speed. Given that
the critical deflection of the SBIT above which an installation is
interrupted is known, the installation crew can read the critical
wind speed until which the installation can be carried out. Fi-
nally, we point to the dimensions of the structure and the 90th
percentile of the peak deflections of the SBIT (figure 6). The
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FIGURE 6. Percentile curves of the empirical joint distribution of the
SBIT’s deflection and wind speed (measurement data) and the statistical
model.

highest peak deflections of the SBIT only reach a maximum 6 cm
which is much smaller than the tower’s motion.

Statistical model of the tower’s motion

Here, we present two statistical models which consists of
the tower’s response during installation and the environmental
variables wave height and wind speed. Similar to the response
model of the SBIT, the response emulator of the tower is also
designed as a GEV distribution. The shape, location and scale
parameters ({, i, o) are modeled as parametric functions of the
wind speed and wave height.

As a next step, the linear correlation between the parameters
of the GEV distribution and intervals of the wind speed and wave
height have been calculated. The results in table 3 indicate, that
the location parameters are strongly linear dependent on the wind
speed and the wave height. However, the shape parameter does
not correlate with either environmental variable while the scale
parameter only correlates with the wind speed.

Tower’s motion conditional on wave height With
the findings presented above, we decided to first build a sim-
ple response model which describes the peak deflections of the
tower conditional on the wave height (model A). Both, the scale
and shape parameter only show a weak linear correlation (table
3). Hence, only the location parameter of the GEV distribution
is described as a linear function of the wave height. The scale
and shape parameter are modeled as fixed values taken from the

TABLE 3. Comparison of the correlation (correlation coefficient r)
between the different parameters of the GEV distribution and intervals
of the wind speed and wave height.

r wind speed r wave height

Shape ¢ 0.173 -0.042
Location u 0.882 0.801
Scale o 0.713 -0.429

global GEV distribution of the peak deflections of the tower:
{ = —0.122, 0 = 3.397. The location parameter is described
as a linear function of the wave height:

‘LL(/’lS) =b1hs+ by (€)]

The parameters were estimated as by = 1.987 and b, = 9.733
using the method of least squares and the python package virocon
[26]. Consequently, the model consists of two fixed values for
the shape and scale parameters of the global GEV distribution
and two parameters resulting from the linear dependency of the
location parameter and the wave height. In their analyses, Verma
etal. (2019) [11] found that the wave parameters are essential for
estimating limiting sea states since these parameters significantly
influence the monopile oscillations during the blade-root mating
task. However, analyzing the linear correlation coefficient, the
influence of the wind speed on the location parameter of the GEV
distribution is higher. Therefore, by ignoring the fact of higher
correlation with the wind speed, we accept a higher uncertainty
of model A in general. The model’s quality is reviewed by a
quantitative analysis in the following.

Tower’s motion conditional on wave height and
wind speed The second model for the tower consists of the
turbine’s response during installation and the two environmen-
tal variables wave height and wind speed (model B). When an-
alyzing the correlation coefficients in table 3, it is seen that the
shape parameter is dependent on neither environmental parame-
ter. Therefore, we modeled the shape parameter as a fixed value
taken from the global GEV distribution presented above. The lo-
cation parameter exhibits a high linear dependency on both the
wave height and the wind speed. Hence, u is modeled as a lin-
ear function of both environmental parameters. Geometrically,
a 2-dimensional linear function means spanning a surface in the
vector space of wave height, wind speed and the tower’s deflec-
tion (equation 4). The scale parameter exhibits a linear depen-
dency on the wind speed. Consequently, we describe the scale
parameter as a linear function conditional on the wind speed.
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TABLE 4. Fitted parameters of model B.

Parameter Value
ci 2471
2 -0.076
3 9.322
c4 0.395
cs 1.589

A GEV distribution is fitted to each interval of wind speed-
wave height combinations, describing the probability distribution
of the tower’s peak deflection for this specific interval of environ-
mental conditions. As before, this results in one shape, location
and scale parameter per interval. Calculating a linear function in
the 3D variable space of wave height, wind speed and the loca-
tion parameter implies fitting a plane equation of the form:

E:{(xd’az)€R3\Z=ax+by+c}. %)

To calculate the best fit linear plane for the location parameter
conditional on the environmental parameters, scipy’s linear al-
gebra functions and the method of least-squares solution to an
equation have been used. Here, by fitting a plane equation to the
location parameter, the dependency on the wave height and wind
speed is calculated at once. Hence, all parameters of model B
have been fitted simultaneously. The scale parameter’s function
has been fitted using the method of least-squares and the python
package virocon again. Consequently, model B consists of one
fixed value for the shape parameter of the global GEV distribu-
tion (§{ = —0.112) and five parameters resulting from the linear
dependency of the location parameter on the wave height and
wind speed and from the linear dependency of the scale param-
eter on the wind speed. The fitted parameters are indicated in
table 4.

.u(hSaV) =cihs+cv+cs ()

o(v) =cqv+cs. (6)

Comparison of the models The presented models
above could serve as an installation assistance, since they are able

to describe the deflection of the tower during single blade instal-
lation. Analyzing the two models quantitatively, different quan-
tiles of the measurement data and the two models are compared
(figure 7). Here, to make the models comparable, we calculated
the 10th, 50th and 90 th percentiles of the two models and the
original data set. Analyzing the 10th and 50 th percentile, it is
found that the statistical model of the tower’s deflection and the
wave height predicts higher values for the peak deflection of the
tower, compared to the statistical model of peak deflection, wave
height and wind speed. For the 90 th percentiles the opposite is
determined. The 10th, 50th and 90 th percentiles of the statis-
tical models together with the corresponding percentiles of the
measurement data are plotted in figure 7 and 8. Since the model
of peak deflection and wave height does not include a depen-
dency of the wind speed, the models can only be compared on
the basis of the wave height. Based on the average of the mean
absolute error (MAE), the two models provide equally good re-
sults (MAE4 = 1.330 and MAEp = 1.330, table 5).
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FIGURE 7. Percentile plot of model A and B of the tower and the
measurement data in the wave plane.

CONCLUSION

For the installation process it is crucial to know the depen-
dency of the peak deflections of SBIT and tower on the wave
height and wind speed. We recommend to model the peak de-
flection of the SBIT as a GEV conditional on the wind speed.
The peak deflection of the tower is modeled as a GEV distribu-
tion conditional on wave height and wind speed. Previous anal-
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TABLE 5. Overview about the goodness of fit of the statistical models
of the maximum deflections of SBIT and tower. * Note, that model A
is stands for the statistical model of the tower’s deflection given wave
height. Model B stands for the model of the tower’s deflection given
wave height and wind speed.

Ay SBIT (cm)  djpgy tower (cm)

Data 6.00 25.00
Model 4.50 20.50 (model A*)
22.50 (model B¥)

Average MAE  0.54 1.33 (both models)

yses did not lead to clear evidence that the SBIT’s oscillations
are contributing to a successful or failed installation. Although
we developed a model for the 1-minute response of the SBIT
and the tower during single blade installation, we did not find a
strong indicator that the oscillations of the SBIT are significantly
influencing the installation procedure (table 5). When compar-
ing, for example the 90 th percentile of the SBIT’s deflections to
the tower’s deflection (figure 6 and 7), it is found that the tower’s
deflections are over 4 times higher than the SBIT’s deflections.
During wind turbine installation, we recommend to orien-
tate on a high percentile such as the 90 th percentile of a model
of 1-minute peak deflection. Such a model allows the instal-
lation personnel to determine, at which environmental condi-

tions the deflections of the tower are below critical values with
a certain probability and risk. The present results do not allow
to express a clear recommendation whether to use the SBIT’s
model in decision-making processes during single blade installa-
tion, hence, more research is required analyzing the motion of the
SBIT during the blade root mating task. Moreover, studying the
probability of occurrence of impact events and their correlation
with deflections could complement the results of this study.

REFERENCES

[1] Wind Europe, 2021. Wind delivers the energy society
wants. https://windeurope.org/about-wind/
wind-energy-today/, accessed 22-10-2021.

[2] Esteban, M. D., Diez, J. J., Lépez, J. S., and Negro, V.,
2011. “Why offshore wind energy?”. Renewable Energy,
36, pp. 444-450.

[3] Verma, A., Jiang, Z., Vedvik, N., Gao, Z., and Ren, Z.,
2019. “Impact assessment of a wind turbine blade root dur-
ing an offshore mating process”. Engineering Structures,
180, pp. 205-222.

[4] Maes, K., De Roeck, G., and Lombaert, G., 2018. “Motion
tracking of a wind turbine blade during lifting using RTK-
GPS/INS”. Engineering Structures, 172(0), pp. 285-292.

[5] Sander, A., Haselsteiner, A. F., Barat, K., Janssen, M.,
Oelker, S., Ohlendorf, J.-H., and Thoben, K.-D., 2020.
“Relative motion during single blade installation: measure-
ments from the north sea”. In Proceedings of the 39th In-
ternational Conference on Ocean, Offshore and Arctic En-
gineering, OMAE2020, ASME.

[6] Sander, A., Meinhardt, C., and Thoben, K.-D., 2020.
“Monitoring of offshore wind turbine under wave and wind
loading during installation”. In XI International Conference
on Structural Dynamics, EuroDyn 2020.

[7] Oelker, S., Sander, A., Kreutz, M., Ait-Alla, A., and Fre-
itag, M., 2021. “Evaluation of the impact of weather-related
limitations on the installation of offshore wind turbine tow-
ers”. Energies, 14(13).

[8] Oelker, S., Ait-Alla, A., Liitjen, M., Lewandowski, M., Fre-
itag, M., and Thoben, K.-D., 2017. “A Simulation Study
of Feeder-Based Installation Concepts for Offshore Wind
Farms”. In The 27th International Ocean and Polar Engi-
neering Conference, International Society of Offshore and
Polar Engineers (ISOPE).

[9] Rippel, D., Jathe, N., Liitjen, M., Szczerbicka, H., and Fre-
itag, M., 2019. “Integrated Domain Model for Operative
Offshore Installation Planning Integrated Domain Model
for Operative Offshore Installation Planning”. In Digital
Transformation in Maritime and City Logistics. Smart So-
lutions for Logistics., C. Jahn, W. Kersten, and R. C.M.,
eds., no. November, epubli GmbH, pp. 25-54.

[10] Zhao, Y., Cheng, Z., Sandvik, P. C., Gao, Z., and Moan, T.,

Copyright © 2022 by ASME



(1]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

2018. “An integrated dynamic analysis method for simulat-
ing installation of single blades for wind turbines”. Ocean
Engineering, 152(7491), pp. 72-88.

Verma, A. S., Jiang, Z., Ren, Z., Gao, Z., and Vedvik, N. P.,
2019. “Response-based assessment of operational limits for
mating blades on monopile-type offshore wind turbines”.
Energies, 12(10), pp. 1-26.

Jiang, Z., Gao, Z., Ren, Z., Li, Y., and Duan, L., 2018. “A
parametric study on the final blade installation process for
monopile wind turbines under rough environmental con-
ditions”. Engineering Structures, 172(April), pp. 1042—
1056.

Shankar Verma, A., Jiang, Z., Ren, Z., Caboni, M., Verhoef,
H., van der Mijle-Meijer, H., Castro, S. G., and Teuwen,
J. J., 2021. “A probabilistic long-term framework for site-
specific erosion analysis of wind turbine blades: A case
study of 31 Dutch sites”. Wind Energy, 24(11), pp. 1315-
1336.

Ren, Z., Jiang, Z., Gao, Z., and Skjetne, R., 2018. “Active
tugger line force control for single blade installation”. Wind
Energy, 21(12), pp. 1344-1358.

Aljoscha Sander and Bas Holman and Andreas Hasel-
steiner, 2022. Could mass eccentricity explain the forma-
tion of orbits in wind turbines? https://arxiv.org/
pdf/2110.12802.pdf, accessed 03-01-2022.
Haselsteiner, A. F.,, Coe, R. G., Manuel, L., Chai, W, Leira,
B., Clarindo, G., Soares, C. G., Hannesdéttir, A., Dimitrov,
N., Sander, A., Ohlendorf, J.-H., Thoben, K.-D., de Haute-
clocque, G., Mackay, E., Jonathan, P., Qiao, C., Myers, A.,
Rode, A., Hildebrandt, A., Schmidt, B., Vanem, E., and
Huseby, A. B., 2021. “A benchmarking exercise for envi-
ronmental contours”. Ocean Engineering, 236.

Stroer, L., 2021. Single blade installation of offshore wind
turbines: A statistical model of motion maxima of off-
shore wind turbine components during installation (Ver-
sion 1) [Data set and Codes]. https://zenodo.org/
record/5779878#.YdgtZS1XY1T.

Sander, A., 2020. Oscillations of Offshore Wind Tur-
bines undergoing Installation I: Raw Measurements [Data
set]. https://zenodo.org/record/4141208+#
.YdgtpylXY1I.

Holman, B., 2021. “Hub motions of offshore wind turbines
during single blade installation”. Master thesis, Delft Uni-
versity of Technology.

Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J., 2004.
Statistics of Extremes. John Wiley & Sons, Ltd, Chichester,
England.

Castillo, E., Hadi, A. S., Balakrishnan, N., and Sarabia,
J. M., 2004. Extreme Value and Related Models with Appli-
cations in Engineering and Science, 1. ed. Wiley & Sons
Ltd.

Dimitrov, N., 2016. “Comparative analysis of methods

10

(23]

[24]

[25]

[26]

for modelling the short-term probability distribution of ex-
treme wind turbine loads”. Wind Energy, 19, pp. 717-737.
Fogle, J., Agarwal, P., and Manuel, L., 2008. “Towards
an improved understanding of statistical extrapolation for
wind turbine extreme loads”. Wind Energy, 11(6), pp. 613—
635.

Mackay, E. B. L., and Jonathan, P., 2020. “Estimation of
environmental contours using a block reampling method”.
In Proceedings of the ASME 2020 39th International Con-
ference on Ocean, Offshore & Arctic Engineering.
Haselsteiner, A. F., Frieling, M., Mackay, E., Sander, A.,
and Thoben, K. D., 2022. “Long-term extreme response of
an offshore turbine: How accurate are contour-based esti-
mates?”’. Renewable Energy, 181, pp. 945-965.
Haselsteiner, A. F., Lehmkuhl, J., Pape, T., Windmeier,
K.-L., and Thoben, K.-D., 2019. “ViroCon: A software
to compute multivariate extremes using the environmental
contour method”. SoftwareX, 9, pp. 95-101.

Copyright © 2022 by ASME





