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A B S T R A C T

Metocean conditions change slowly, over the course of hours, sometimes even days, as storms develop and
swells travel across the globe. Thus, measurements of these conditions are often serially correlated. However,
many commonly employed methods for predicting metocean conditions for engineering design analyses are
built upon an assumption of statistical independence of the data (e.g., hourly significant wave heights). In
this brief study, we present an assessment of the serial (temporal) dependence in a selected metocean dataset.
A method for processing a dataset that identifies and groups data sequences as ‘‘storm’’ events, and thus
reduces serial dependence, is proposed and tested for estimating extreme metocean return levels. The results
of this study show that the proposed procedure does indeed limit dependence and that environmental contours
produced using this storm grouping procedure are reasonable based on the original dataset and when compared
with associated alternative contours that ignore temporal dependence.
1. Introduction

The ocean is a dynamic system, in which currents, winds, and waves
are processes with memory/inertia. Ocean storms do not last for a
single hour and then instantly transition to an unrelated (statistically in-
dependent) condition, instead they build over time and persist for many
hours, often even days. However, to inform engineering design analy-
ses, metocean measurements and/or simulation outputs are often taken
hourly or every three hours. Treating serial metocean observations as
statistically independent observations, a common assumption in the
statistical methods employed in engineering analyses, is questionable
at best.

In ocean engineering, we are often interested in characterizing
extreme environmental events that cause immediate structural failure
(so-called ‘‘ultimate limit states’’). Thus, metocean extremes are often
defined as ‘‘return levels’’ that are exceeded at a given ‘‘return period’’.
When ultimate limit states are considered, this return period should
be defined based on storms peaks, as opposed to all 1-hour sea state
observations: The return period, 𝑇𝑟, is the average time between two
consecutive storm peak events exceeding the threshold 𝑥. The threshold
is called return level. Note that this storm peak definition leads to
different return values for a given period than if all metocean data were
used. This is due to the serial correlation of hourly metocean data. The
time series of hourly observations that makes up a storm contains many
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individual observations. For an ultimate limit analysis, these joint-
occurring observations, however, should be treated as a single event: If
the structure fails due to the conditions at 2 PM, another failure from
the subsequent sample at 3 PM is likely not relevant. Consequently, if
all hourly observations are used to calculate return levels too many
extreme events are included and, consequently, return levels for a given
return period are overestimated. Failure to account for the presence
of serial correlation in metocean data will result in an over-prediction
of extreme return levels (see, e.g., Beirlant et al., 2004), and thus an
over-design of structures.

While many common methods and engineering workflows do treat
serial metocean conditions as statistically independent, accounting for
serial correlation in metocean data is by no means new (see, e.g., Ochi,
2005; Jonathan and Ewans, 2013). Perhaps the most straightforward
approach to limit the influence of dependence in time series data is
to downsample the data, considering, for example, only every third
measurement from recorded hourly samples (see, e.g., Vanem, 2018).
Other methods employ block maxima and or peak-over-threshold data
subsets (Coles, 2001; Ferro and Segers, 2003; Leford and Tawn, 1996).
However, as discussed by Fawcett and Walshaw (2012), such tech-
niques inevitably reduce the quantity of data used and, thus, decrease
the precision of return level predictions at target return period levels.
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Fig. 1. Time series and scatter diagrams of data chosen from NDBC 44007 showing significant wave height (𝐻𝑚0), zero-up-crossing period (𝑇𝑧), and spectral wave steepness (𝑆).
Orange markers indicate sea states where 𝐻𝑚0 > 4m. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
A means of generating extreme environmental contours defined in
terms of environmental variables based on storm peaks was proposed
by Mackay and Jonathan (2020), who utilized block maxima for wave
height and accounted for possibly non-coincident wave periods in a
resampling step in order to generate contours. Derbanne and de Haute-
clocque (2019) proposed a contour method in which data were first
projected at lines at various angles in the 2D variable space and then
peak-over-threshold was used to decluster the projected 1D data. Fogle
et al. (2008) examined methods outlined in the IEC wind turbine design
guidelines (IEC 61400-1, IEC, 2019), while specifically considering the
effectiveness of block maxima methods in limiting the influence of
serial dependence. While Fogle et al. (2008) did identify noticeably
different levels of serial correlation depending on the selected block size
when using the block maxima method, this effect did not necessarily
translate to significant effects on extreme value prediction.

In this brief study, we examine the degree to which hourly mea-
surements from a wave buoy exhibit serial dependence and propose
a means of processing the measurements to reduce the influence of
that dependence and support the prediction of extreme sea state con-
tours. First, we assess the serial dependence of a case-study dataset.
Next, based on the idea that a metocean statistical analysis might be
formulated based on distinct ‘‘storm’’ events, we propose a relatively
simple method for selecting such storms to generate a new dataset on
which to operate. Finally, we compare the original dataset with several
distilled storm datasets by comparing levels of serial correlation, the
probability distributions of each dataset, and environmental contours
produced using each dataset.

2. Analysis

2.1. Data

This study was conducted using data from NDBC 44007,1 which is
a wave measurement buoy located off the coast of Maine. This same
dataset was also used in the recent ‘‘EC Benchmarking’’ exercise (Hasel-
steiner et al., 2019a, 2021). In particular, we consider hourly observa-
tions of zero-up-crossing period (𝑇𝑧) and significant wave height (𝐻𝑚0).
Additionally, we present the spectral wave steepness (Myrhaug, 2018),
which is given by

𝑆 =
2𝜋𝐻𝑚0

𝑔𝑇 2
𝑧

, (1)

where 𝑔 is the acceleration due to gravity. As we are concerned with
the temporal correlation in the measurements, we select a mostly

1 NDBC 44007 is located off the coast of Portland, ME: https://www.ndbc.
noaa.gov/station_page.php?station=44007.
2

Fig. 2. Estimated autocorrelation function of hourly 𝐻𝑚0 values from the selected
dataset with 95% confidence interval computed via Bartlett’s formula.

contiguous four-year period2 of collected data beginning in 1996. Time
series and scatter plots of the data are shown in Fig. 1.

From Fig. 1, it is clear to see that large wave measurements are often
closely spaced temporally. Choosing an arbitrary threshold of 4 m, we
can see that sea states with significant wave heights larger than this
level are fairly rare. In total, there are 217 observations with 𝐻𝑚0 > 4m
(0.6% of the four-year dataset). These 217 observations occur in fairly
small number of tightly-grouped clusters. This strongly grouped nature
of the extreme sea states supports the idea that metocean conditions
are indeed serially dependent to some degree.

2.2. Testing for serial correlation

The estimated autocorrelation function of hourly 𝐻𝑚0 values from
the selected dataset is presented in Fig. 2 with a 95% confidence
interval computed via Bartlett’s formula (see,e.g., Brockwell and Davis,
2009). We can note the strong serial correlation for time lags up to
roughly two days. It is also clear to see an annual harmonic, reflecting
the seasonal nature of ocean waves (e.g., with largest waves generally
occurring each winter).

Elaborating on our qualitative observation about the temporal clus-
ter of observations with 𝐻𝑚0 > 4m (recall Fig. 1), if we select the
𝑛 largest 𝐻𝑚0 measurements (for different values of 𝑛), we might
be interested in the subset of measurements that occur in a given
time interval (e.g., 24 h) of another large sea state. For any selected
value of 𝑛 (the largest 𝑛 measurements), let us refer to the number of
measurements that occur near one another within a designated time
window, ±𝑡𝑐 , as 𝑚. The fraction of these large wave measurements that

2 With measurements recorded every hour and recalling that 1996 was a
leap year, there should be (4 ⋅365+1) ⋅24 = 35,064 measurements. Due to some
short gaps in the dataset, there are actually 34,296 measurements (i.e., there
are 768 missing data points—roughly 2%).

https://www.ndbc.noaa.gov/station_page.php?station=44007
https://www.ndbc.noaa.gov/station_page.php?station=44007
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Fig. 3. Fraction of the 𝑛 largest samples within a cutoff period of 𝑡𝑐 = 24h of each other (m/n).
ccur close each other is then (𝑚∕𝑛). The results of such tallying of
ata, for various values of 𝑛 with 𝑡𝑐 = 24h, are presented in Fig. 3.
rom Fig. 3, we note that generally greater than 90% of the large wave
easurements occur within ± 24 h of another large wave measurement.

Clearly, hourly sea states exhibit strong serial correlation. This is
lso true of the most extreme sea states (as shown in Figs. 1 and 3).
ne common means of dealing with serial correlation is to use a block
axima approach. Mackay and Jonathan (2020) used a block maxima

pproach to model the distribution of independent storm peaks. As
second step, they resampled time series from the original dataset

o capture the complete range of environmental data and calculated
nvironmental contours. The resampled time series were serially cor-
elated such that the approach did not control for serial correlation
n the bi-variate distribution used for contour construction. Here, we
ropose a somewhat similar concept that is also related to the block
axima method, but is different in the way joint block maxima are
efined and that we do not resample storm time series here. Note also
hat our proposed method operates solely on 𝐻𝑚0 (without considering
𝑧) – more discussion on this aspect of the proposed approach and
hy it appears viable for the dataset considered here is provided in
ection 2.4.

.3. Grouping by storm

With the recognition now that many large wave measurements
ccur near in time to one another, it is useful to group a series of
onsecutive measurements into ‘‘storms’’. Accordingly, we refer herein
o a storm as a grouping of sea state measurements that take place in
ome designated short time window. These storms should be chosen
n such a way that they are serially independent, while minimizing
heir size to ensure the largest possible dataset on which to perform
ubsequent analyses. We shall also, in turn, consider the maxima of
uch defined storms.

The following procedure is proposed to group the metocean data
nto storms:

1. Sort: Sort the dataset by 𝐻𝑚0 in descending order.
2. Identify storms: Starting with the largest 𝐻𝑚0 observed, find

all other observations that occur within the stated cut-off time
(±𝑡𝑐) and group all such measurements as (lesser) members of a
distinct storm.

3. Repeat: Remove the lesser members of each storm from the
base dataset. Repeat Step 2 until a desired number of storms (𝑛𝑠)
is obtained.

As the cut-off time is decreased (𝑡𝑐 → 0) and the number of storms is
ncreased (𝑛𝑠 → 365.25⋅24), the storm dataset will approach the original

dataset. Note that herein, for better intuitive clarity, we use 𝑛𝑠 to refer
o the average number of storms per year.

An illustration of the process outlined above is presented in Fig. 4.
3

ere, the procedure illustrates identification of three distinct storms.
Fig. 4. Illustration of storm identification procedure using the time series of significant
wave height (𝐻𝑚0) and zero-upcrossing period (𝑇𝑧). The members of each storm are
shown with filled markers; maxima for each storm are shown with a heavier marker.

Note that the maxima of these storms are not necessarily the three
largest data points in the overall record but, per the outlined procedure
above, they are local maxima that are separated by a period at least
as long as 𝑡𝑐 . Additionally, the identified storms are not necessarily
evenly spaced, as in most block maxima approaches, and can in fact
be asymmetric about the storm maxima (see Storm 2 in Fig. 4) due
to the fact that storm membership is mutually exclusive. Note that
this storm selection procedure operates entirely on the significant wave
height and does not consider the zero-up-crossing period. Thus, when
considering the two-dimensional 𝐻𝑚0 − 𝑇𝑧 space, the procedure does
not necessarily filter for high quantile observations, but instead uses
the significant wave height and cut-off time separate the observations
into non-overlapping blocks.

The results of this procedure are illustrated with our selected dataset
in Fig. 5(a). In this case, we look for the four largest storms where
members of a storm must occur within four hours of the local maxima
(𝑡𝑐 = 4h). The left-hand portion of Fig. 5(a) shows a scatter diagram of
significant wave height and zero-up-crossing period. Arrows connecting
storm data points indicate the progression of time. The three plots
on the right-hand side of the figure show time series of normalized
significant wave height, zero-up-crossing period, and spectral wave
steepness.

Recognizing that the selection of 𝑡𝑐 = 4h is somewhat arbitrary, it
is instructive to consider other values for this threshold. Accordingly,
Figs. 5(b) and 5(c) show the resulting plots for 𝑡𝑐 = [12, 24]h as

well. We can see from Fig. 5(a), when 𝑡𝑐 = 4h, that the 2nd, 3rd,
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Fig. 5. Scatter plots showing the four largest storms within the four-year dataset using different cutoff times (𝑡𝑐 = [4, 12, 24]ℎ). Smaller plots to right show normalized time histories
of significant wave height (𝐻 ′

𝑚0), zero-up-crossing period (𝑇 ′
𝑧 ), and spectral wave steepness (𝑆′), centered at the storm maxima.
and 4th largest storms all occurred on the same day (October 21,
1996);3 we should probably not consider these each to be distinct

3 When 𝑡𝑐 = 4h, the 2nd, 3rd, and 4th largest storms are actually directly
adjacent to each other. This is evident from closer examination of time series
plots on the right hand side of Fig. 5(a), where we can see that the 2nd, 3rd,
4

storms but, instead, one long sustained storm. When 𝑡𝑐 is increased to
12 h (Fig. 5(b)), all of the four largest storms are seen to have occurred

and 4th largest storms are asymmetric about their maxima. This is similar to
the scenario shown for ‘‘Storm 2’’ in Fig. 4.
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on distinct days. Setting 𝑡𝑐 = 24h (Fig. 5(c)) results in the same storms
as for 𝑡𝑐 = 12h, but with many observations of relatively low significant
wave heights included as well, perhaps indicating that 𝑡𝑐 = 24h is too
large, as these four very large storms may begin to incorporate smaller
(but independent) storm events.

It is also interesting to note from Fig. 5 how the storms build over
time. As is well understood (see, e.g., Ochi, 2005), developing storms
can exhibit very steep waves. Following the paths shown (by arrows)
between points on the scatter plots in Fig. 5, we can confirm that the
storms often grow by ascending along the upper left extents of the
data (i.e., close to the wave breaking limit). This behavior appears
fairly consistent for this site. The time series on the right side of Fig. 5
also show this same evolutionary progression, with the storm maxima
preceded by increasingly steep waves. With 𝑡𝑐 = 24h (Fig. 5(c)), we
note two cases where the wave period decreases dramatically, likely
indicating the arrival of strong local winds followed by growth in wave
height.

Beyond the qualitative assessments that can be applied based on
Fig. 5, we can also apply more objective statistical tests to assess serial
correlation. The Durbin–Watson test uses a statistic defined as (Durbin
and Watson, 1950)

𝐶 =
∑𝑇

𝑡=2
(

𝑥𝑡 − 𝑥𝑡−1
)2

∑𝑇
𝑡=1 𝑥

2
𝑡

. (2)

Values of 𝐶 close to 2 indicate no evidence of autocorrelation,
whereas values close to 0 indicate positive autocorrelation and values
close to 4 indicate negative autocorrelation.4

Additionally, Blum’s statistic (Blum et al., 1961) can be used to test
or serial correlation in time series, as was done by Fogle et al. (2008).
or any two independent variables, 𝑋 and 𝑌 , each of length 𝑁 , we can

compute the following test statistic:

𝐵 = 𝜋4

2𝑁4

𝑁
∑

𝑗=1

(

𝑁1(𝑗)𝑁4(𝑗) −𝑁2(𝑗)𝑁3(𝑗)
)2

where
𝑁1(𝑗) is the number of (𝑥, 𝑦) pairs where 𝑥 ≤ 𝑥𝑗 and 𝑦 ≤ 𝑦𝑗
𝑁2(𝑗) is the number of (𝑥, 𝑦) pairs where 𝑥 > 𝑥𝑗 and 𝑦 ≤ 𝑦𝑗
𝑁3(𝑗) is the number of (𝑥, 𝑦) pairs where 𝑥 ≤ 𝑥𝑗 and 𝑦 > 𝑦𝑗
𝑁4(𝑗) is the number of (𝑥, 𝑦) pairs where 𝑥 > 𝑥𝑗 and 𝑦 > 𝑦𝑗

(3)

In considering a single time series, (3) can be used where 𝑌 is simply
a ‘‘lag-1’’ version of 𝑋 (i.e., 𝑦𝑗 = 𝑥𝑗+1). At a 1% significance level, the
null hypothesis of independence is rejected for values of 𝐵 > 4.23.

Results from each of these independence tests are shown in Fig. 6 for
storm maxima with varying values of cutoff period (𝑡𝑐) and number of
storms per year (𝑛𝑠). (Tabulated results are also presented in Table 1.)
The results for the storm maxima datasets are shown along with the
original dataset (𝑡𝑐 = 0, 𝑛𝑠 = 8579) and a block maxima method. The
block maxima method uses all of the data with block sizes equivalent
to those used by the storm grouping (e.g., for 𝑡𝑐 = 12h, the storm
grouping procedure will include the maxima along with observations
within ±12h, so the equivalent block maxima approach uses a block of
size 25 h).

The results shown in Fig. 6 clearly indicate that the storm maxima
datasets exhibit weaker dependence than the original dataset. Fig. 6
also shows that dependence generally decreases as the cut-off time (𝑡𝑐)
increases. This result is consistent with our ad hoc conclusions drawn
from Fig. 5. Additionally, as expected, dependence also decreases when

4 Critical values of the Durbin–Watson statistic at a given significance level
re dependent on the number of samples considered (Turner, 2020). In the case
f this study, where the number of samples ranges from 34,296 for the original
ataset to 240 for the most restrictive of the storm grouping datasets, the upper
ritical values of the test statistic range from 1.974 to 1.707, respectively.
5

i

Table 1
Data dependence statistics for the original dataset (𝑡𝑐 = 0, 𝑛𝑠 = 8, 579) and storm
maxima datasets with different values of cutoff time (𝑡𝑐 ) and number of sea states
per year (𝑛𝑠). The Durbin–Watson test statistic is 𝐶, where values closer to 2 indicate
less dependence; the Blum statistic is 𝐵, where the null hypothesis of independence is
rejected for 𝐵 > 4.23 (at 1% significance level). The fraction of data used is given by
𝑓𝑚𝑎𝑥 and 𝑓𝑡𝑜𝑡, which are the fraction of the original data used in terms of the storm
maxima and total storm grouping, respectively.
𝑡𝑐 𝑛𝑠 𝐶 𝐵 𝑓𝑚𝑎𝑥 𝑓𝑡𝑜𝑡

0 8579 0.03 4.1e4 – 1

4
60 1.1 17 0.007 0.028
120 0.91 51 0.014 0.056
240 0.7 1.6e2 0.028 0.11

12
60 1.8 1.1 0.007 0.084

120 1.6 14 0.014 0.17
240 1.3 64 0.028 0.34

24
60 2 1.7 0.007 0.17

120 2 1.5 0.014 0.34
240 1.6 32 0.028 0.67

fewer storms are used (𝑛𝑠 → 0). For the same level of data retention, the
storm maxima datasets exhibit lower levels of serial correlations than
the block maxima datasets.

2.4. Environmental contours from storm maxima

These storm maxima datasets, which exhibit lower levels of serial
dependence than the original dataset, can be used within a larger en-
gineering analysis workflow. Environmental contours are widely used
in ocean engineering to efficiently estimate extreme return levels (Ross
et al., 2020). As a example case, we shall employ the storm maxima
datasets in producing environmental contours.

Prior to generating contours, we must consider the appropriate ex-
ceedance probability level for our storm model data. If we assume that
there are 𝑛 ‘‘independent’’ observations per year and we are interested
in extremes associated with a return period of 𝑇𝑟 years, then the target
exceedance probability level would be

𝛼 = 1
𝑛
⋅
1
𝑇𝑟

. (4)

If we consider only the five largest storms in the four-year dataset,
we have 𝑛 = 5∕4, and for a 25-year return period (𝑇𝑟 = 25), we would
be interested in 𝐻𝑚0 values associated with a target exceedance proba-
bility level of 𝛼 = (5∕4⋅25)−1 = 0.032 based on a distribution constructed
using maxima from only the selected storms. In a similar manner,
if we considered a more typical scenario where measurements are
taken once each hour (when we assume that ‘‘all’’ data are considered
independent), we would have 𝛼 = (24 ⋅ 365.25 ⋅ 25)−1 = 4.56 × 10−6.

For a cumulative distribution, 𝐹 (𝑥), the complementary cumulative
distribution, which describes the exceedance probability, is 1 − 𝐹 (𝑥).
ince we are dealing with two different types of distributions (i.e., the
riginal dataset has measurements every hour whereas the storm max-
ma datasets have 𝑛𝑠 measurements per year), to perform a comparison
e can perform a normalization. The daily exceedance probability
1 − 𝐹𝐷(𝑥)) can be obtained from the daily cumulative distribution
unction. For example, if 4-hour storm maxima are considered,5 the
aily distribution function is obtained as:

𝐷(𝑥) =
[

𝐹4h(𝑥)
]24∕4 . (5)

With a clear means of comparing the original dataset (with hourly
bservations) and the storm maxima datasets (with 𝑛𝑠 observations per
ear), we may begin to examine the distributions of these different

5 Note that (5) assumes serial independence; as one means of accounting
or serial correlation, (5) can be altered to include sub-asymptotic extremal
ndex (Mackay et al., 2021; Ledford and Tawn, 2003).
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Fig. 6. Durbin–Watson and Blum independence test statistics for varying values of cutoff time (𝑡𝑐 ) and number of storms per year (𝑛𝑠). Original dataset is marked as 𝑡𝑐 = 0,
𝑛𝑠 = 8579.
datasets. Empirical (marginal) exceedance probability plots for 𝐻𝑚0 are
shown in Fig. 7. The distribution for the original dataset is shown with
those of three storm maxima datasets (𝑡𝑐 = [4, 12, 24]h and 𝑛𝑠 = 240).
Bootstrapping has been performed on the original dataset so as to
include a 95% confidence interval in Fig. 7. From this, we can see that
the 1-year return level varies between 6.2 and 7 m, with a median of
6.7 m when hourly observations are considered to be independent. It is
also interesting to note that many of the nine largest observations in
the original dataset (shown with the red bracket in Fig. 7) all occurred
within ±12h of each other, as these observations have been reduced to
the single largest observation (𝐻𝑚0 = 7m) in the storm maxima datasets
for 𝑡𝑐 ≥ 12h.

When storm maxima are considered, the uncorrected empirical 1-
year return value decreases to between 5.6 m (𝑡𝑐 = 4h) and 6.2 m
(𝑡𝑐 = 24h). This effect is to be expected and consistent with theory:
If serially correlated data such as our original time series are directly
used to estimate return values, these return values overestimate the
true return value for a given return period (Beirlant et al., 2004, p.
381). The storm maxima are less serially dependent and therefore
lead to less overestimation. The effect of serial correlation on extreme
values is often characterized with the extremal index 𝜃 ∈ [0, 1], where
independent extremes lead to 𝜃 = 1 and, at asymptotic levels, serially
dependent extremes lead to 𝜃 < 1 (Beirlant et al. 2004, pp. 376). The
extremal index characterizes extremal dependence at asymptotic levels,
but not at levels that might be of interest in any particular application.
At finite return periods, the effect of serial correlation can be quantified
using a sub-asymptotic extremal index 𝜃𝑇 which is less or equal than
the asymptotic extremal index 𝜃. Mackay et al. (2021) showed that 𝜃𝑇
directly relates to the bias associated with the return period of a value
𝑥: 𝜃𝑇 = �̃� (𝑥)∕𝑇 (𝑥), where 𝑇 (𝑥) is the true return period of value 𝑥, and
�̃� (𝑥) is the return period of the equivalent independent sequence. For
our example, that means that the 1-year return value of 6.7 m that we
computed based on the original dataset does not have a true return
period of 1 year if we are interested in distinct storm events; instead,
its average recurrence period of exceedance is longer.

While many approaches are available to construct environmen-
tal contours, accounting for different dependence structures among
the variables using parametric and non-parametric approaches (Hasel-
steiner et al., 2021; Manuel et al., 2018), we apply the joint model
6

Fig. 7. Daily empirical exceedance probability for significant wave height for original
dataset and three different storm maxima datasets with 𝑡𝑐 = [4, 12, 24]h and 𝑛𝑠 = 240.
Red bracket shows observations in the original dataset that occurred within ±12h of
each other. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

and fitting procedure suggested by Haselsteiner et al. (2020). From
the joint distributions, an environmental contour based on the inverse
first-order reliability method (IFORM) is constructed (Winterstein et al.,
1993). This procedure is implemented in the ViroCon package (Hasel-
steiner et al., 2019b). The joint model used was originally developed
to describe the distribution for all sea states; however, with different
parameters, we have found that it provides reasonable fits to the
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Fig. 8. Significant wave height QQ plots for original dataset and storm maxima dataset with 𝑡𝑐 = 24h and 𝑛𝑠 = 240. Empirical 1-year return level indicated with ‘+’ marker.
distribution for storm maxima as well. See Appendix for a complete
description of the model, goodness of fit metrics, and additional details.

The resulting fits for both the storm maxima (𝑡𝑐 = 12h, 𝑛𝑠 = 240)
and original dataset are illustrated in Fig. 8. The empirical 1-year return
levels are shown with ‘+ ’ markers. The models for both storm maxima
and original datasets show good agreement with the data overall,
but the model for storm maxima datasets tracks the high quantile
observations more closely than the model for the original dataset.

The goodness of fit for joint two-dimensional model with 𝑡𝑐 = 12h
and 𝑛𝑠 = 240 is illustrated in Fig. 9. The model’s isodensity curves show
good agreement with those from a kernel density estimate performed
on the dataset.6 The agreement is generally better for the extremes than
the high probability data, which is expected given the fitting procedures
(see Appendix for further details and tabulated goodness of fit metrics).

Based on the fitted distributions, we may construct extreme sea state
contours. Nine 1-year contours constructed based on storm maxima
are shown in Fig. 10. In each case, the contour constructed based
on the storm maxima is shown alongside a contour based on the
original dataset. Each row of plots in Fig. 10 uses a certain cut-off time
(𝑡𝑐 = [4, 12, 24]h working from top to bottom), while each column
corresponds to a certain number of storms used (𝑛𝑠 = [60, 120, 240]
working from left to right).

The contours from the storm maxima dataset give smaller significant
wave heights for a given zero-up-crossing period than the contour
produced using the original dataset. As discussed for the marginal
distribution, this is expected and consistent with theory on serial depen-
dence of extremes: Environmental contours, which represent bivariate
return values, are overestimated if the underlying distribution is based
on serially correlated data.

In most cases, the shape of the storm maxima contours are similar to
that of the original dataset. Note that the lower boundaries of the storm
maxima contours do not capture some low 𝐻𝑚0 values in the original
dataset. This is expected because the contours describe the extremes of
storm maxima instead of the extremes of all sea states. However, this
is not a major issue, given that these contours are generally employed
in design studies where large waves are the primary concern.

The largest sea state from each contour is reported in Table 2 as
𝐻𝑚𝑎𝑥

𝑚0 and the corresponding zero-up-crossing period is 𝑇𝑧(𝐻𝑚𝑎𝑥
𝑚0 ). As

also indicated by the exceedance plot shown in Fig. 7, as 𝑡𝑐 is decreased

6 The bandwidth for Gaussian kernel was chosen based on method proposed
by Scott (2015).
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Fig. 9. Joint model goodness of fit for storm maxima dataset with 𝑡𝑐 = 12h and 𝑛𝑠 = 240
illustrated by isodensity curves (contour lines) and kernel density estimate (filled
contour) for probability density levels of 𝛼 = [0.01, 0.032, 0.1]m−1s−1. See Appendix
for additional joint goodness of fit plots.

and as 𝑛𝑠 is increased, the contours from the storm maxima datasets
tend to approach the contour from the original dataset (see Fig. 10 and
the 𝐻𝑚𝑎𝑥

𝑚0 and 𝑇𝑧(𝐻𝑚𝑎𝑥
𝑚0 ) columns in Table 2).

From Fig. 10 and Table 2, we can observe that the contours gen-
erated the storm maxima datasets are fairly similar. However, subtle
differences do exist, particularly when 𝑇𝑧 is large, and it is well-
known that sea states on the contour other than that with the largest
significant wave height can cause the largest loading for certain types
of responses (see, e.g., Muliawan et al., 2013; Edwards and Coe,
2018; de Hauteclocque et al., 2022). Based on the results presented
in Section 2.2, adding more sea states to the storm maxima dataset
by using higher values for 𝑛𝑠 will tend to increase serial dependence.
Additionally, looking at the contours in Fig. 10 from left to right
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Fig. 10. One-year return contours based on original dataset and storm maxima with 𝑛𝑠 = [60, 120, 240] and 𝑡𝑐 = [4, 12, 24]h. As 𝑛𝑠 increases and 𝑡𝑐 decreases, the storm maxima
environmental contours’ peaks 𝐻𝑚0 increase, approaching that of the original dataset.
(increasing 𝑛𝑠), we see that higher values of 𝑛𝑠 mostly tend to increase
the number of low wave height observations that are included in the
storm maxima dataset. Interestingly, the storm peak datasets also hold
events with extreme zero-up-crossing period, although, as discussed
in Section 2.3 and illustrated in Fig. 4, the storm grouping procedure
used here operates only based significant wave height. The presence of
these extreme zero-up-crossing period observations suggest that more
complex schemes based on storm resampling or based on block maxima
where variables are taken from different times within the block may
not necessarily be required to obtain a dataset that can be used for a
sea state environmental contour. In practice, one might use the results
shown in Fig. 6 to balance the opposing demands of limiting serial
dependence and using a sufficiently large fraction of the dataset to
enable robust analyses.
8

3. Discussion and conclusion

This paper presents a relatively simple method for reducing serial
correlation in metocean datasets for further use in extreme condition
predictions. The method is based on grouping the dataset into distinct
storms, and using the maxima from each storm to form a new dataset
with less serial correlation. The initial results presented in this paper
show that the method does reduce dependence and gives extreme
value results that are generally in-line with those when using a dataset
with hourly measurements, but with lower significant wave heights
predicted at most wave periods. We also showed that joint models that
were developed for all sea states data can be applied to storm maxima
data.

As mentioned in Section 2.1, we chose to perform the analysis using
four years of nearly contiguous data. Given the nature of the analysis
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Table 2
Distribution fit parameters and mean absolute error (MAE) for 𝐻𝑚0 > 4m. The largest sea state on the 1-year contour has a significant wave height of 𝐻𝑚𝑎𝑥

𝑚0 and a zero-up-crossing
period 𝑇𝑧(𝐻𝑚𝑎𝑥

𝑚0 ).

𝑡𝑐 𝑛𝑠 𝛼 𝛽 𝛿 𝑐0 𝑐1 𝑐2 𝑐3 MAE 𝐻𝑚𝑎𝑥
𝑚0 𝑇𝑧(𝐻𝑚𝑎𝑥

𝑚0 )

0 8579 0.34 0.78 4.5 3.8 5.5 1.8e−20 0.34 0.18 7 8.4

4
60 0.07 0.58 9.7e+03 5.2 3.5 1.6e−12 2.2 0.099 5.9 7.9
120 0.11 0.61 1.2e+03 4.2 5 1.9e−14 85 0.13 5.9 8.1
240 0.16 0.65 1.8e+02 3.9 5.4 2.2e−21 0.47 0.17 6 8.1

12
60 0.24 0.71 2.1e+02 4.4 4.6 5.3e−15 1.6e+02 0.18 5.7 8
120 0.23 0.69 71 4 5.3 5.6e−19 0.43 0.24 5.7 8
240 0.18 0.64 39 3.3 6.4 2.3e−21 0.53 0.3 5.7 8.1

24
60 0.53 0.85 29 3.9 5.3 1.8e−23 0.57 0.2 5.7 7.9
120 0.38 0.76 18 3.2 6.3 2.4e−16 0.63 0.29 5.7 8
240 0.44 0.77 5.9 3.4 5.9 1.3e−21 0.33 0.32 5.7 7.9
𝜇

and the concern with serial correlation, this dataset was considered
preferable over others with larger proportions of missing data. To
allow for more direct benchmarking with the raw dataset, we similarly
considered analyses with return periods of one to four years. While
these time periods are generally shorter than those considered for
offshore engineering projects, the underlying theory of the proposed
method is agnostic to the total period of record or the return period.
With the short dataset employed here, the 1-year return period contours
are more appropriate to study the role of serial correlation; had we
considered longer return period contours, the added complexity arising
from extrapolation leading to greater uncertainty in the tails would
mask the issue of including or excluding serial correlation in storms.
Nevertheless, future studies should apply this storm grouping procedure
to more scenarios more typical in practice (e.g., using a dataset of
15 years to predict extremes for a return period of 100 years).

As only a single location and dataset were considered in this study,
future studies should consider the application and performance of this
storm grouping approach with a wider range of locations. Additionally,
while we have considered a two-dimensional contour for the significant
wave height and zero-up-crossing period, it would also be useful and
interesting to consider other design variables, such as wave direction,
current, and wind. Furthermore, there are many methods for producing
contours from a dataset, which produce dramatically different results—
some exploration of how these different contours pair with the storm
grouping approach should be considered.
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Appendix. Probabilistic models & fitting

As suggested by Haselsteiner et al. (2020), we employ the following
probabilistic model. An exponentiated Weibull distribution is fit to 𝐻𝑚0
and a log-normal distribution is fit to 𝑇𝑧 conditional on 𝐻𝑚0.

𝐹 (ℎ𝑚0) =

(

1 − exp
(

−
ℎ𝑚0
𝛼

)𝛽
)𝛿

(6a)

𝐹 (𝑡𝑧|ℎ𝑚0) =
1
2
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⎟
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(6b)

Here, 𝛼 is the scale parameter while 𝛽 and 𝛿 are shape parameters.
The log-normal distribution parameter, 𝜇𝑡𝑧 , is modeled by

𝑡𝑧 = ln
⎛

⎜

⎜

⎝

𝑐1 + 𝑐2

√

ℎ𝑚0
𝑔

⎞

⎟

⎟

⎠

, (7)

where 𝑔 is the acceleration due to gravity. The parameters 𝑐1 and 𝑐2
determined based on fitting. The parameter 𝜎𝑡𝑧 is modeled by

𝜎𝑡𝑧 = 𝑐3 +
𝑐4

1 + 𝑐5ℎ𝑚0
. (8)

The parameters of the joint models were estimated in multiple steps.
First the marginal distribution of 𝐻𝑠 was estimated by minimizing the
sum of the squared errors, where errors were weighted by 𝐻2

𝑚0 so as
to give more influence to the larger waves (Haselsteiner and Thoben,
2020). Next the 𝑇𝑧 data was sorted into intervals based on 𝐻𝑚0 bins of
size 1 m. Using maximum likelihood estimation, distributions were fit
to each of these subsets of 𝑇𝑧 containing more than ten observations.
Finally, the dependence functions (7)–(8) were fit by minimizing the
least squares error. All estimated parameters and the model’s errors for
𝐻𝑚0 > 4m are shown in Table 2.

The goodness of fit for the storm maxima joint models is also
illustrated by Fig. 11, which shows isodensity curves for the joint
models over top of the storm maxima datasets and isodensity curves
based on a kernel density estimate, where the bandwidth was chosen
based on method proposed by Scott (2015). The fits look reasonable
(i.e., the parametric models isodensity curves follow those from the
kernel density estimate), especially considering the largest and longest
waves. The fits do not capture the wave breaking limit particularly well,
nor do they capture the distribution for the smallest waves in the storm
maxima datasets, but this second issue is of little concern given the
application of these contours in predicting large extreme sea states.
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Fig. 11. Joint model goodness of fit for storm maxima datasets illustrated by isodensity curves (contour lines) and kernel density estimate (filled contour) for probability density
levels of 𝛼 = [0.01, 0.032, 0.1]m−1s−1.
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