
lable at ScienceDirect

Renewable Energy 156 (2020) 1146e1157
Contents lists avai
Renewable Energy

journal homepage: www.elsevier .com/locate/renene
Predicting wave heights for marine design by prioritizing extreme
events in a global model

Andreas F. Haselsteiner a, b, *, Klaus-Dieter Thoben a, b

a University of Bremen, BIK e Institute for Integrated Product Development, 28359, Bremen, Germany
b ForWind e Center for Wind Energy Research of the Universities of Oldenburg, Hannover, Bremen, Germany
a r t i c l e i n f o

Article history:
Received 29 November 2019
Received in revised form
3 April 2020
Accepted 21 April 2020
Available online 3 May 2020

Keywords:
Significant wave height
Weibull distribution
Storms
Design load case
Structural design
Offshore wind turbine
* Corresponding author. University of Bremen, BI
Product Development, 28359, Bremen, Germany.

E-mail addresses: a.haselsteiner@uni-bremen.de
uni-bremen.de (K.-D. Thoben).

https://doi.org/10.1016/j.renene.2020.04.112
0960-1481/© 2020 Elsevier Ltd. All rights reserved.
a b s t r a c t

In the design process of marine structures like offshore wind turbines the long-term distribution of
significant wave height needs to be modelled to estimate loads. This is typically done by fitting a
translated Weibull distribution to wave data. However, the translated Weibull distribution often fits well
at typical values, but poorly at high wave heights such that extreme loads are underestimated. Here, we
analyzed wave datasets from six locations suitable for offshore wind turbines. We found that the
exponentiated Weibull distribution provides better overall fit to these wave data than the translated
Weibull distribution. However, when the exponentiated Weibull distribution was fitted using maximum
likelihood estimation, model fit at the upper tail was sometimes still poor. Thus, to ensure good model fit
at the tail, we estimated the distribution’s parameters by prioritizing observations of high wave height
using weighted least squares estimation. Then, the distribution fitted well at the bulks of the six datasets
(mean absolute error in the order of 0.1 m) and at the tails (mean absolute error in the order of 0.5 m).
The proposed method also estimated the wave height’s 1-year return value accurately and could be used
to calculate design loads for offshore wind turbines.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

To estimate the loads on a marine structure like an offshore
wind turbine, the long-term distribution of environmental vari-
ables that describe wave characteristics needs to be modelled.
Especially important is the variable significant wave height, which
describes the intensity of a sea state. The long-term distribution of
significant wave height is typically estimated by fitting a parametric
probability distribution to measured or simulated wave data. Then,
based on this probability distribution different quantiles are
derived and used as design conditions for structural integrity cal-
culations of themarine structure of interest. For example, standards
for offshorewind turbines [1,2], require designers to estimate the 1-
year and 50-year return value of significant wave height e extreme
values that are exceeded, on average, every 1 and 50 years,
respectively. To calculate these values, designers might use a ‘global
model’ or an ‘event model’. Global models are derived using all
K e Institute for Integrated
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available data from long series of subsequent observations while
event models are derived from selected extremes of the original
dataset [3, p. 75].

These two approaches have different strengths and weaknesses.
Global models utilize the complete original dataset and conse-
quently make use of all available information. Further, no pre-
processing is required and commonparametric distributions can be
used. However, time series of significant wave height show strong
auto-correlation such that the individual datapoints are not inde-
pendent and identically distributed (IID condition). Additionally,
common fitting approaches like maximum likelihood estimation
(MLE) and least squares estimation weight every datapoint equally
and thus do not take into account that in marine design high values
of significant wave height are especially important.

Event models are typically fitted using the peak over threshold
method or the block maximum method. In both cases, the original
time series are preprocessed and invidiual peaks are identified.
These peaks fulfill the IID condition to a much higher degree than
the raw time series. However, much less information is used when
fitting a distribution to these peaks. Further, event models only
describe the upper e or as a synonym right e tail of the global
distribution of significant wave height. In design, sometimes also
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Nomenclature

CDF Cumulative distribution function
DLC Design load case
ICDF Inverse cumulative distribution function
MLE Maximum likelihood estimation
PDF Probability density function
WLS Weighted least squares

Fig. 1. Typical model fit of the translated Weibull distribution. The distribution fits
the data relatively well at its body (a), but poorly at its tail (b).
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quantiles within the bulk of the distribution need to be estimated
such that a second model that covers lower quantiles is required.
Often, this second model is a global model such that, in one design
project, two diverging models for high quantiles might exist.

Here, we focus on global models. In the past, significant wave
height has been modelled using various parametric distributions
with two to five parameters: The lognormal distribution [4,5], the
2-parameter Weibull distribution [5,6], the translated Weibull
distribution (sometimes simply called ‘3-parameter Weibull dis-
tribution’) [7,8], the generalized gamma distribution [9], a 3-
parameter beta distribution of the second kind (and two similar
distributions, which showed worse model fit) [10], Ochi’s four-
parameter distribution [5] and the ‘Lonowe distribution’ [11,12]
(Table 1). At the moment, probably the most used distribution to
model significant wave height is the Weibull distribution. While
some others authors use the 2-parameter Weibull distribution (for
example [13,14]), most authors use the translated Weibull distri-
bution (for example [8,13,15e19]. Certifying organizations also
recommend to assume that significant wave height follows a
translated Weibull distribution unless data indicate otherwise [ [3],
p. 76].

However, the translated Weibull distribution often does not fit
well at its upper tail and understimates high quantiles (Fig. 1).
Further, some authors have criticized that the distribution’s loca-
tion parameter, which represents a minimum non-zero value, lacks
physical meaning since sea states of significant wave height zero
exist and represent the calm sea [5].

In this paper, we will show that a similar distribution, the
exponentiated Weibull distribution, provides better model fit to
significant wave height data than the translated Weibull dsi-
tribution. The exponentiated Weibull distribution has three pa-
rameters as well and consequently does not increase model
complexity. Instead of a location parameter, the distribution has a
second shape parameter, which offers the flexibility that is required
to ensure goodmodel fit at both, the distribution’s bulk and the tail.
2. Exponentiated Weibull distribution

The exponentiated Weibull distribution is a generalization of
the common 2-parameter Weibull distribution. It has been pro-
posed by Mudholkar and Srivastava [20] to model nonmonotone
Table 1
Distributions that have been used to model the long-term distribution of significant wav

Distribution Nr. of parameters

Lognormal 2
2-parameter Weibull 2
Translated Weibull 3
Generalized gamma 3
3-parameter beta (second kind) 3
Ochi distribution 4
Lonowe distribution 4e5
failure rates and has subsequently been used in a variety of contexts
(for a review, see Nadarajah et al. [21]). It extends the 2-parameter
Weibull distribution with a second shape parameter, d, that comes
as an exponent of the cumulative distribution function (CDF):

FðxÞ¼
h
1� e�ðx=aÞb

id
(1)

for x>0, a>0, b>0 and d>0. In the case of d ¼ 1 the exponentiated
Weibull distribution becomes the 2-parameter Weibull distribu-
tion. For comparison, the translated Weibull distribution’s CDF,
which has a location parameter, g, instead of a second shape
parameter reads

FðxÞ¼1� e�½ðx�gÞ=a�b : (2)

3. Material and methods

To assess whether the exponentiated Weibull distribution rep-
resents a better model for significant wave height, we analyzed
hourly time series of wave data of six locations. We considered
three models: (i) the translated Weibull distribution with its pa-
rameters estimated using maximum likelihood estimation (MLE),
(ii) the exponentiated Weibull distribution, fitted using maximum
likelihood estimation and (iii) the exponentiated Weibull distri-
bution, fitted using weighted least squares (WLS) estimation. To
assess the goodness of fit of the three models, we computed the
mean absolute error between the models’ predictions and the ob-
servations. Further, we computed 1-year and 50-year return values
and visually inspected quantile-quantile (QQ) plots. In the
following, we describe the datasets, the parameter estimation and
the goodness of fit assessment in detail.

3.1. Datasets

We used six datasets of significant wave height (Table 2). Three
datasets (A, B & C) were derived frommoored buoys off the US East
e height.

References that used it for Hs Proposed in

[4,5] 1956 [4]
[5,6,13,14] 1972 [6]
[7,8,13,15e19] 1973 [7]
[9] 1992 [9]
[10] 1999 [10]
[5] 1980 [5]
[11,12] 1985 [11]



Fig. 2. Locations of the used datasets.
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Coast and three datasets were gathered from a hindcast that covers
the North Sea (D, E & F; Fig. 2). The buoy datasets were recorded by
the National Data Buoy Center (NDBC; [22]) and were downloaded
from www.ndbc.noaa.gov. They cover the time between January
1st, 1996 and December 31st, 2005. However, the buoys did not
measure the complete duration such that these datasets hold be-
tween 81,749 (dataset C) and 83,917 (dataset A) hourly measure-
ments. Datasets D, E and F were simulated in the hindcast
‘coastDat-2’ [23,24] and cover the complete time between January
1st, 1965 and December 31st, 1989. Additionally, for each location
we retained some data (datasets Ar;Br;Cr;Dr; Er & Fr) to assess how
well the fitted distributions can predict a future time period. The
NDBC datasets were preprocessed: we filtered out time periods
when no measurements have been conducted, calculated signifi-
cant wave height from the spectral energy, and created consistent
hourly time series by combining 30-min sea states to hourly sea
states when sea states with a duration of 30 min instead of 60 min
were recorded. No preprocessing has been performed on the
coastDat-2 datasets. The datasets we used in this paper, are also
used in an ongoing benchmarking study on estimating extreme
environmental conditions for engineering design [25].
3.2. Parameter estimation methods

We estimated the parameters of the translated Weibull distri-
bution using maximum likelihood estimation (MLE). MLE is a
standard parameter estimation technique [26] and is commonly
used in the context of estimating the distribution of significant
wave height (see, for example, [8]). We used Matlab’s (Mathworks,
USA, version 2019a) function MLE.m to perform the MLE compu-
tation. For the second model, an exponentiated Weibull distribu-
tion fitted using MLE, we used Matlab’s function MLE.m as well. The
third model, the exponentiated Weibull distribution whose pa-
rameters are fitted using weighted least squares estimation, rep-
resents a less typical parameter estimation technique and is
therefore explained in detail.

The goal of this approach is tominimize the sum of theweighted
squared deviations between the observed quantiles and the pre-
dicted quantiles. Let the set fxigni¼1 represent the ordered values of
a significant wave height sample with x1 representing the lowest
measured value and xn representing the highest measured value,
where n represents the length of the sample. Each ordered value, or
sample quantile, xi, has an associated probability pi ¼ ði�0:5Þ= n
where i is the index of the ordered value, i2½1; n�. Further, let bxi
denote the predicted quantile based on an exponentiated Weibull
distribution with the parameters a;b;d. Then, the set of parameters
that minimizes the sum of the weighted squared deviations be-
tween the sample quantiles and the predicted quantiles can be
Table 2
Used datasets of significant wave height. The buoy data were downloaded from the web
were derived from the coastDat-2 hindcast [23]. n ¼ Number of observations.

Dataset Duration n

A Jan. 1996 to Dec. 2005 82,805
Ar Jan. 2006 to Oct. 2017 92,515
B Jan. 1996 to Dec. 2005 83,917
Br Jan. 2006 to Jul. 2017 91,403
C Feb. 1996 to Dec. 2005 81,749
Cr Jan. 2006 to Jun. 2018 93,571
D Jan. 1965 to Dec. 1989 219,144
Dr Jan. 1990 to Dec. 2014 219,144
E Jan. 1965 to Dec. 1989 219,144
Er Jan. 1990 to Dec. 2014 219,144
F Jan. 1965 to Dec. 1989 219,144
Fr Jan. 1990 to Dec. 2014 219,144
expressed as

fba; bb; bdg¼ argmina;b;d

Xn
i¼1

wiðxi � bxiÞ2; (3)

where bxi ¼ F�1ða; b; d; piÞ (4)

and F�1 denotes the inverse cumulative distribution function
(ICDF). While in principal many functions for the weights, wi, are
possible, here we chose to weight the error based on the squared
wave height,

wi ¼
x2iPn
i¼1x

2
i

: (5)

Thus, errors between observation and prediction at high wave
heights contribute much stronger to the overall error than errors at
low wave heights ensuring that extreme events are prioritized in
the parameter estimation procedure. Alternative choices that pri-
oritize high wave heights could be, for example, linearly increasing
weights, wi ¼ xi=

P
xi, or cubically increasing weights, wi ¼

x3i =
P

x3i . We briefly tested these alternatives and, based on visual
inspection of the estimated distributions, decided to weight errors
quadratically. The outlined estimationmethodwas implemented in
Matlab. The code is open source (MIT license) and available at
https://github.com/ahaselsteiner/exponentiated-weibull. In the
appendix we describe the used mathematics and algorithms to
solve Equation (3).

To assess the uncertainty of the estimated parameters, we used
bootstrapping with replacement (see, for example, [27]). We esti-
mated standard errors based on 100 bootstrap samples.
site of the National Buoy Data Center, www.ndbc.noaa.gov, and the hindcast samples

Site Data source

43.525 N 70.141 W (off Maine coast) buoy 44007

28.508 N 80.185 W (off Florida coast) buoy 41009

25.897 N 89.668 W (Gulf of Mexico) buoy 42001

54.000 N 6.575 E (off German coast) hindcast

55.000 N 1.175 E, (off UK coast) hindcast

59.500 N 4.325 E (off Norwegian coast) hindcast

http://www.ndbc.noaa.gov
https://github.com/ahaselsteiner/exponentiated-weibull
http://www.ndbc.noaa.gov


Table 3
Estimated parameters of the translated Weibull distributions. Values after the
±-sign represent the bootstrap estimate of the standard error.

Dataset a (scale) b (shape) g (location)

A 0.9445±0.0055 1.4818±0.0097 0.0981±0.0039
B 1.1413±0.0118 1.5990±0.0140 0.1878±0.0030
C 1.1645±0.0124 1.5562±0.0166 0.0566±0.0097
D 1.5797±0.0032 1.4067±0.0029 0.1024±0.0014
E 1.8608±0.0027 1.4925±0.0028 0.1222±0.0007
F 2.5693±0.0059 1.5466±0.0046 0.2248±0.0008
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3.3. Goodness of fit assessment

We assessed each model’s goodness of fit by computing the
mean absolute error and by comparing each model’s predicted 1-
year return value with the empirical 1-year return value. Both as-
sessments are first performed with the original datasets (A;B;C;…)
and then with the retained datsets (Ar;Br ;Cr ;…).

Mean absolute error, e, was first computed for the whole
dataset:

e¼
Pn

i¼1ðxi � bxiÞ
n

: (6)

Then, to assess the goodness of fit at high quantiles, we
computed mean absolute error for quantiles with pi > 0:99 (‘the
tail’) and for quantiles with pi >0:999 (‘the very tail’). The two er-
rors, e0:99 and e0:999 read

e½pi� ¼
Pn

i¼jðxi � bxiÞ
n� jþ 1

(7)

where j is the index of the first empirical quantile whose pi-value is
above the threshold of 0.99 or 0.999.

For the assessment of the predicted 1-year return value, we
computed the normalized return value, H*

s1, by dividing the pre-
dicted return value, bHs1, by the empirical return value, Hs1:

H*
s1 ¼

bHs1

Hs1
(8)

where Hs1 is the smallest empirical quantile whose probability, pi,
is greater than ð1 � peÞ, with pe being the probability of exceed-
ance, pe ¼ 1=ð365:25 � 24Þ. For consistency, bHs1 is computed using
this empirical pi-value too, instead of the exact value, which is 1�
pe. Then H*

s1 ¼ 1 represents perfect agreement, H*
s1 < 1 a too low

prediction and H*
s1 >1 a too high prediction.

4. Results

4.1. Estimated parameters and visual assessment

The fitted translated Weibull distributions (Table 3) provide
decentmodel fit at the bulk of the data, but fit poorly at the tail. This
is apparent both, in density plots (Fig. 3 and 4) and in QQ-plots
(Fig. 5). In all datasets, the translated Weibull distribution pre-
dicts too low probability densities in the tail (pi >0:99; Fig. 4) and
consequently also too low quantiles in the tail (Fig. 5a).

Density plots suggest that the fitted exponentiated Weibull
distributions (Table 4) provide good model fit at both, the body and
the tail (Fig. 3 and 4). At the tails, the densities of the MLE-fitted
exponentiated Weibull distributions provide better model fit than
the translated Weibull distributions. However, for dataset D and F
the MLE-fitted exponentiated Weibull distribution predicts too
high densities. The densities of theWLS-fitted distributions seem to
better fit at these datasets. Overall, at the tail, the WLS-fitted
exponentiated distributions match the empirical density values
the closest.

The QQ-plots show similar results as the density plots: TheMLE-
fitted exponentiated Weibull distributions match the data better
than the translated Weibull distributions at high quantiles (Fig. 5).
However, at four datasets they predict too high values (datasets A;
D; E & F). The WLS-fitted distributions provide good model fit over
the complete range of the datasets. Only at the highest few obser-
vations deviations between the ordered values and the theoretical
quantiles are apparent.

In summary, the density plots and the QQ-plots suggest that the
exponentiated Weibull distribution is a better global model for
significant wave height than the translated Weibull distribution.
However, the QQ-plots show that in some datasets the MLE-fitted
exponentiated Weibull distributions predict too high wave
heights at high quantiles. There, the WLS-fitted distributions
represent an improvement over the MLE-fitted distributions.

4.2. Quantitative assessment

The two models of the exponentiated Weibull distribution
provide the best fit in terms of mean absolute error (Fig. 6). When
the whole range of the datasets is considered, the MLE-fitted dis-
tributions have the lowest mean absolute error in five of six data-
sets. In the tail (pi >0:99) the WLS-fitted exponentiated Weibull
distributions have the lowest mean absolute errors in five of six
datsets. In the very tail (pi >0:999) the WLS-fitted exponentiated
Weibull distributions have the lowest errors in all datasets. There,
the averaged mean absolute errors of the three models are
0:24±0:14 m, 1:08±0:67 m and 1:80±0:50 m (WLS-fitted expo-
nentiated Weibull distribution, MLE-fitted exponentiated Weibull
distribution and translated Weibull distribution, respectively;
e0:999-values are averaged over the six datasets, N ¼ 6; values after
the ±-sign represent standard deviations).

The empirical return values are best predicted by theWLS-fitted
exponentiated Weibull distribution (Fig. 7). Its averaged normal-
ized 1-year return value is 0.985, its standard deviation 0.054 (N ¼
6). The translated Weibull distribution predicts too low 1-year re-
turn values in all datasets (H*

s1 ¼ 0:714±0:122, N ¼ 6) and the
MLE-fitted exponentiated Weibull distribution predicts too high
return values in four datasets (H*

s1 ¼ 1:112±0:151, N ¼ 6).
The three type of models lead to big differences when 50-year

return values are predicted (Fig. 8). For example, for dataset A the
translated Weibull distribution predicts Hs50 ¼ 5:43 m, the MLE-
fitted exponentiated Weibull distribution predicts Hs50 ¼ 14:35 m
and the WLS-fitted distribution predicts Hs50 ¼ 10:86 m. For com-
parison, in dataset A, which covers only a duration of 10 years, the
highest measured Hs-value is 7.10 m.

As a possibly more direct assessment of how well the fitted
distributions predict future wave heights, we compared the fitted
distributions to retained parts of the used data sources. The results
obtainedwith these retained datasets are similar to the results with
the original datasets: QQ-plots show that the WLS-fitted expo-
nentiated Weibull distributions provide good model fit at low,
medium and high quantiles (Fig. 9). Further, the translated Weibull
distributions predict too lowwave heights at high quantiles and the
MLE-fitted exponentiated Weibull distributions sometimes predict
too high wave heights at very high quantiles.

Among all models and datasets, the overall mean absolute error
is between 0.01 and 0.14 m and nomodel is best or worst among all
datasets (Fig. 10). In the very tails (pi >0:999), the WLS-fitted
exponentiated Weibull distributions have the lowest averaged
mean absolute error, 0:37±0:08 m (N ¼ 6). The averaged mean
absolute error of the MLE-fitted exponentiated Weibull



Fig. 3. Model fit between dataset A and the three considered models. (a) Complete range of the distribution. (b) Tail of the distribution (pi >0:99Þ. The three models fit decently
at the distribution’s body, but at the tail the translated Weibull distribution underestimates the observed probability density. This behavior is present in all six datasets.

Fig. 4. Tail plots of all data sets (pi >0:99). The translated Weibull distributions predict too low probability densities in all datasets. In dataset D and F, the MLE-fitted exponentiated
Weibull distributions predict too high probability densities.
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distributions is 0:93±0:63 m (N ¼ 6) and the averaged mean ab-
solute error of the translated Weibull distributions is 1:79± 0:49 m
(N ¼ 6; both also for pi >0:999).

When the predicted 1-year return values are compared with the
empirical 1-year return values of the retained datasets, the results
are similar as in the comparison with the values of the original
datasets (Fig. 11): The translated Weibull distributions predict too
low wave heights (H*

s1 ¼ 0:724±0:137, N ¼ 6), the MLE-fitted
exponentiated Weibull distributions predict mostly too high wave
heights (H*

s1 ¼ 1:120±0:112, N ¼ 6) and the WLS-fitted distribu-
tions match the empirical return values best (H*

s1 ¼ 0:996± 0:054,
N ¼ 6).

In summary, the quantitative assessment showed that the three
models have overall mean errors in the same order of magnitude.
Among all datasets, all models and both in-sample prediction
(datasets A;B;…) and out-of-sample prediction (datasets Ar;Br ;…),
the overall mean error was between 0.01 and 0.14 m. Overall mean
error and QQ-plots suggest that the threemodels perform relatively
similar for typical Hs-values. In the very tail (pi >0:999), however, a
clear ranking of model performance is appararent: The WLS-fitted
exponentiated Weibull distribution has the lowest averaged mean
absolute error (0.24 m in-sample prediction, 0.37 m out-of-sample
prediction) and the translated Weibull distribution has the highest
error (1.80 m in-sample, 1.79 m out-of-sample).

5. Discussion

5.1. Comparison between the tested and other models

Our analysis suggests that the exponentiated Weibull



Fig. 5. QQ-plots of all data sets. (a) Translated Weibull distributions. (b) Exponentiated Weibull distributions fitted with maximum likelihood estimation (MLE). (c) Exponentiated
Weibull distributions fitted with weighted least squares (WLS) estimation.

Table 4
Estimated parameters of the exponentiated Weibull distributions. Parameters
are estimated either using maximum likelihood estimation (MLE) or weighted least
squares (WLS) estimation. Values after the ±-sign represent the bootstrap estimate
of the standard error.

Dataset Method a (scale) b (shape) d (shape)

A MLE 0.0373±0.0041 0.4743±0.0094 46.6078±3.8433
WLS 0.2069±0.0149 0.6844±0.0142 7.7863±0.6239

B MLE 0.1731±0.0077 0.6563±0.0085 17.3927±0.7582
WLS 0.0988±0.0259 0.5835±0.0316 36.5747±9.7319

C MLE 0.3026±0.0085 0.7445±0.0077 6.4434±0.1762
WLS 0.2269±0.0735 0.6973±0.0636 9.8461±4.2791

D MLE 0.4728±0.0072 0.7452±0.0042 5.1186±0.0743
WLS 0.9801±0.0278 1.0077±0.0147 2.1787±0.0805

E MLE 0.7889±0.0098 0.8842±0.0052 3.7615±0.0513
WLS 1.2387±0.0249 1.0991±0.0120 2.0867±0.0601

F MLE 0.7180±0.0117 0.7663±0.0046 6.5994±0.1112
WLS 1.6237±0.0387 1.0941±0.0141 2.4034±0.0824
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distribution is a better model for significant wave height than the
translated Weibull distribution. Especially at the tail, the expo-
nentiated Weibull distribution matches the empirical data better.
However, when the distribution is fitted usingmaximum likelihood
estimation, the estimated parameters are mainly driven by the bulk
of the data and not by the data in the very tail. Consequently, in our
analysis, considerable errors remained for high quantiles such as
the 1-year return value. In marine structural design, high quantiles
of significant wave height are especially important. Thus, to
improve model fit at the tail, we estimated the distribution’s pa-
rameters by minimizing the sum of the weighted squared errors
between data andmodel. To prioritize high values, weweighted the
errors based on the squared wave height value.

The strongest possible prioritization of observations of high
wave heights would be to ignore observations up to a particular
threshold. In this case one would fit a distribution solely to the tail.
To create a global model, a second distribution could be fitted to the
bulk of the data. The combination of these two distributions creates
a ‘two-part model’, which would serve as a global model. In such a
model, the tail could be modelled with a generalized Pareto dis-
tribution and the body could be modelled, for example, with a
Weibull distribution. The generalized Pareto distribution is often
used to model the tails of other distributions and has been
considered for wave heights (see, for example, [28,29]) We expect
that a two-part model could estimate the tail even better than the
model that we proposed, however, that is expected for a model that
has more parameters (2e3 parameter for the tail and 2e3 param-
eter for the body). Further, two-part models either have a discon-
tinuity in the probability density function (PDF) at the transition
between the two distributions or they enforce continuity as
another boundary condition, which might weaken the goodness of
fit to the data (for a review on extreme value threshold estimation,
see Scarrott and MacDonald [30]).

Other models that have been proposed as global models for the
significant wave height are the log-normal distribution [4], the 2-
parameter Weibull distribution [6], the generalized gamma distri-
bution [9], the 3-parameter beta distribution of the second kind
[10], the ‘Ochi distribution’ [5] and the ‘Lonowe distribution’ [11].
The 2-parameter Weibull distribution and the log-normal distri-
bution have only two parameters and e to justify that we propose
to use a distribution with three parameters e should fit clearly
worse to the data. These 2-parameter distributions have been
considered to be insufficient by other authors (see, for example,
[5,12]) and a brief inspection we performed suggested the same
thing for the datasets of this study.

To understand why the exponentiated Weibull distribution
provides much better model fit than the common 2-parameter
Weibull distribution, plotting the data on Weibull paper is illumi-
nating (Fig. 12). On Weibull paper, the wave data does not follow a
straight line, but a continuously bending curve. The exponentiated
Weibull distribution’s second shape parameter, d, enables the dis-
tribution to follow this bend: d>1 will lead to a curve that bends to
the right and d<1 will lead to a curve that bends to the left. The
translated Weibull distribution’s location parameter also leads to a
slight bend when plotted on Weibull probability paper. However,
its location parameter does not control the shape directly and



Fig. 6. Mean absolute error of the predicted significant wave height for different parts of the distribution. Mean absolute error is a measure for the goodness of fit. It is
calculated from the deviations between sample quantiles and predicted quantiles (see Equations (6) and (7)). Circles ¼ translated Weibull distributions, diamonds ¼ MLE-fitted
exponentiated Weibull distributions, squares ¼ WLS-fitted exponentiated Weibull distributions.

Fig. 7. Comparison of the 1-year return values predicted by the three considered
models. Normalized return values are calculated by dividing each model’s return value
by the empirical return value such that a value of 1 describes perfect agreement. The
average of the normalized 1-year return values is too low for the translated Weibull
distribution and too high for the MLE-fitted exponentiated Weibull distribution. The 1-
year return values of the WLS-fitted exponentiated Weibull distribution agrees best
with the empirical return values.

Fig. 8. Predictions of the 50-year return values. The translated Weibull distribution
predicts the lowest return value in all considered datasets.
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consequently the translated Weibull distribution cannot match the
empirical wave data to a similar degree as the exponentiated
Weibull distribution.

The Ochi distribution and the Lonowe distribution have more
parameters than the exponentiated Weibull distribution: The Ochi
distribution has four parameters and the Lonowe distribution has
four or five (depending on whether one counts the threshold be-
tween theWeibull-part of the model and the lognormal-part of the
model as a parameter or not). Since we consider the performance of
the exponentiated Weibull distribution as sufficiently good, we did
not consider these more complex distributions in this study.

The generalized gamma distribution [9], and the 3-parameter
beta distribution of the second kind [10], however, have similar
model complexity in terms of number of parameters. Thus, we
tested these distributions by fitting them to the six datasets using
maximum likelihood estimation and by computing the overall
mean absolute error (details are provided in the appendix). The
generalized gamma distributions and the 3-parameter beta distri-
butions had errors of 0.0317±0.0203 m and 0.0294±0.0177 m,
respectively (N ¼ 6). These averaged errors are higher than the
averaged error of the MLE-fitted exponentiated Weibull distribu-
tions (0.0259±0.0158 m, N ¼ 6), however, in the same order of
magnitude. In two datasets, the exponentiatedWeibull distribution
had the lowest error and in four datasets, the generalized gamma



Fig. 9. QQ-plots of the fitted distributions and the retained datasets. (a) Translated Weibull distributions. (b) Exponentiated Weibull distributions fitted with maximum like-
lihood estimation. (c) Exponentiated Weibull distributions fitted with weighted least squares estimation.

Fig. 10. Mean absolute error between the fitted distributions and the retained datasets. In the very tail (pi >0:999) the WLS-fitted exponentiated Weibull distribution has the
lowest error. Circles ¼ translated Weibull distributions, diamonds ¼ MLE-fitted exponentiated Weibull distributions, squares ¼ WLS-fitted exponentiated Weibull distributions.
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distribution had the lowest error. Thus these three models seem to
perform roughly equally well. Future research based on more
datasets could help to find out more detailed differences between
these three distributions.

In summary, among the variety of possible global models for
significant wave height, the exponentiated Weibull distribution
represents a good compromise between model complexity and
model accuracy: It performs better than the currently most used
model e the translated Weibull distribution e without increasing
model complexity. The good performance of the exponentiated
Weibull distribution can be explained by its second shape param-
eter, d, which allows the distribution to represent a bending curve
when plotted on Weibull paper.

5.2. Implications on design loads

The current international standards that regulate the design of
fixed and floating offshore wind turbines [1,2] require designers to
estimate the 1-year and 50-year return values of the significant
wave height. These return values are used in so-called design load
cases (DLCs). A design load case describes an operating condition of
a wind turbine, together with the environmental conditions during
the particular operating condition. They are used to check whether
awind turbine design preserves structural integrity under all future



Fig. 11. Comparison of the predicted 1-year return values and the return values of
the retained datasets. Normalized return values are calculated by dividing each
model’s return value by the empirical return value such that a value of 1 describes
perfect agreement.
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environmental and operating conditions that can reasonable be
expected. DLCs are developed and maintained by standardization
organizations. The International Electrotechnical Commission’s
standard IEC 61400e3 [1] is widely used by turbine manufacturers,
certifying organizations and by academics who study wind turbine
design (see, for example, [31,32]). The standard abbreviates design
load cases with numbers. Estimating the 1-year wave height return
value, Hs1, is required for the design load cases 6.3, 7.1 and 8.2,
while the 50-year return value, Hs50, is required for DLC 6.2 [1]. In
each of these design load cases, the estimated wave height return
value determines a design load that is used to evaluate structural
integrity. Consequently, which model is used to describe the dis-
tribution of significant wave height influences wind turbine design
via these design load cases.

Our results show that the current common technique of fitting a
translated Weibull distribution to significant wave height data us-
ing maximum likelihood estimation underestimates the 1-year
return value strongly. At the six tested sites, the 1-year return
value is underestimated on average by about 30%. In some cases the
Fig. 12. Weibull probability plot of datasets A and B. The shape parameter d enables th
empirical data. The parameters of the shown distributions were fitted using maximum like
underestimation is evenmore severe. For example, in dataset A, the
empirical 1-year return value is about 6.7 m, but the fitted trans-
lated Weibull distribution predicts a wave height of only 4.3 m.

In structural design, uncertainties are partly taken care of with
safety factors, which are multiplied to design loads (for details, see,
for example [1, pp. 66e68],). The normal safety factor for offshore
wind turbines is 1.35 [1], which is of similar magnitude as the
typical error when Hs1 is estimated based on a fitted translated
Weibull distribution. This suggests that the found errors can be
critical for the safety of awind turbine design, especially if a turbine
is particularly wave-sensitive (for a discussion on wave-sensitive
turbine design, see, for example, [19]). The differences in the esti-
mated 50-year return values are potentially even bigger: For
example, for dataset B, the translated Weibull distribution predicts
a 50-year return value of about 6 m, while the WLS-fitted expo-
nentiated Weibull distribution predicts a return value of about
12 m.

Besides the unconditonal distribution of Hs, the offshore wind
standard IEC 61400-3-1 [1] requires designers to estimate joint 50-
year extremes of wind speed and wave height. In the standard’s
DLC 1.6 designers need to estimate the conditional wave height
distribution for a given wind speed, that is FðhsjvÞ. The standard
does not prescribe which distribution should be assumed for
FðhsjvÞ, however, researchers usually assume that the conditional
wave height follows a 2-parameter Weibull distribution (see, for
example, [12,33]). We tested how the 2-parameter Weibull distri-
bution and the exponentiated Weibull distribution fit to condi-
tional wave height data, using dataset D (the hindcast coastDat-2
also contains hourly wind data). Visual inspecton of Weibull
probability paper plots suggest that the exponentiated Weibull
distribution fits better (Fig. 13). Future research could investigate
how much better the exponentiated Weibull distribution performs
across multiple datasets and which expressions could be used to
model the dependence functions of the parameters a, b and g.
6. Conclusions

In this paper, we showed that the exponentiated Weibull dis-
tribution matches the empirical distribution of significant wave
e exponentiated Weibull distribution to prescribe a curved line that is similar to the
lihood estimation.



Fig. 13. Weibull probability plots of conditional wave height distributions. Dataset D was sorted into wind speed intervals (v ¼ wind speed). Due to the shape parameter, d, the
exponentiated Weibull distributions (dotted lines) can follow the curved lines of the empirical data. The shown exponentiated Weibull distributions were fitted using weighted
least squares estimation.
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height data better than the commonly used translated Weibull
distribution. Since the exponentiated Weibull distribution does not
add complexity when compared with the translated Weibull dis-
tribution, we argue that it represents a better global model for
significant wave height. In the six analyzed datasets, the translated
Weibull distribution always predicted too low 1-year return values.
When the exponentiated Weibull distribution was fitted using
maximum likelihood estimation, it predicted too high 1-year return
values in four of six cases. To improve its fit at the tail, we estimated
its parameters by minimizing the weighted squared error between
the model and the observations. The weights were chosen to
quadratically increase with wave height. These WLS-fitted distri-
butions showed good fit over the complete range of the datasets.
Overall mean absolute error was in the order of 0.1 m and at the
very tails (pi >0:999) mean absolute error was in the order of 0.5 m.
Based on our results, we argue that if data do not indicate other-
wise, the exponentiated Weibull distribution should be fitted to
wave data instead of the translated Weibull distribution.

6.1. Data availability and open source matlab implementation

The complete analysis performed in this study and the creation
of the presented figures can be reproduced by running the file
CreateAllFigures.m that is available in the repository https://
github.com/ahaselsteiner/2019-paper-predicting-wave-heights.
This repository contains also all datasets e preprocessed and
structured as they were used in this study. Alternatively, the raw
data of this study can be downloaded from the NDBC website,
www.ndbc.noaa.gov, and from the coastDat-2 repository, doi:10.
1594/WDCC/coastDat-2_WAM%5fNorth_Sea.

The considered distributions were implemented in custom
Matlab code. We created a Matlab class for each distribution. These
classes provide functions to assess the PDF, the CDF, the ICDF, to fit
the distribution’s parameters and to draw samples from the dis-
tribution. They are available at.

� https://github.com/ahaselsteiner/exponentiated-weibull,
� https://github.com/ahaselsteiner/translated-weibull,
� https://github.com/ahaselsteiner/generalized-gamma and
� https://github.com/ahaselsteiner/beta-3p-second-kind.
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Appendix A. WLS-based estimators

Our estimation method of the three parameters of the expo-
nentiated Weibull distribution, a, b and d is based on the ‘Weibull
paper linearization’ that is commonly used for the 2-parameter
Weibull distribution (see, for example, Scholz [34]). In the
following, we will describe our method in detail.

The ICDF of the exponentiated Weibull distribution reads

x¼a
h
� loge

�
1� p1=d

�i1=b
: (A.1)

Taking the logarithm with base 10 we get

log10ðxÞ¼ log10ðaÞ þ
1
b
log10

h
� loge

�
1�p1=d

�i
; (A.2)

which shows a linear relationship between log10ðxÞ and log10½ �
logeð1 � p1=dÞ�.

Thus, if we write log10ðxÞ ¼ x*, log10ðaÞ ¼ a, 1
b
¼ b and

log10½ �logeð1�p1=dÞ� ¼ p* we get the simple expression

https://github.com/ahaselsteiner/2019-paper-predicting-wave-heights
https://github.com/ahaselsteiner/2019-paper-predicting-wave-heights
http://www.ndbc.noaa.gov
https://doi.org/10.1594/WDCC/coastDat-2_WAM%5fNorth_Sea
https://doi.org/10.1594/WDCC/coastDat-2_WAM%5fNorth_Sea
https://github.com/ahaselsteiner/exponentiated-weibull
https://github.com/ahaselsteiner/translated-weibull
https://github.com/ahaselsteiner/generalized-gamma
https://github.com/ahaselsteiner/beta-3p-second-kind
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x*¼ aþ bp*: (A.3)

This linear relationship allows us to use standard linear
regression techniques to estimate the parameters a and b and, with
these parameters, the distribution’s parameters a and b.

Here, we have chosen to minimize the weighted squared de-
viations between the observed and the predicted values. Let the
function Q express the sum of the weighted squared errors:

Qða; b; dÞ ¼
Xn
i¼1

wi

�
x*i � bx*i

�2
¼

Xn
i¼1

wi
�
x*i �

�
aþ bp*i

�	2
; (A.4)

where p*i is the normalized pi-value,

p*i ¼ log10
h
� loge

�
1�p1=di

�i
: (A.5)

We can find the WLS-estimators ba and bb by differentiating
Qða; bÞ and finding its root:

vQða; bÞ
va

¼ �2
Xn
i¼1

wi
�
x*i �

�
aþ bp*i

�	¼0; (A.6)

vQða; bÞ
vb

¼ �2
Xn
i¼1

wip
*
i

�
x*i �ðaþ bpiÞ

	¼0: (A.7)

Solving for a in Equation (A.6) leads to

ba¼ x* � bbp*; (A.8)

where x* ¼ Pn
i¼1wix*i and p* ¼Pn

i¼1wip*i . Similarly, by solving for b
in Equation (A.7) and by using Equation (A.8), we can derive an
expression for bb:
bb¼

Pn
i¼1

�
wip*i x

*
i

�� x*p*Pn
i¼1

�
wip*2i

�
� p*2

(A.9)

With ba and bb we can calcuate ba and bb:
ba¼10ba ; (A.10)

bb¼1=bb: (A.11)

Thus, for any given d-value we can explicitly compute the WLS-
estimators ba and bb.

We are, however, still missing an expression for the estimator bd.
To derive this expression, let us define a function that returns the
weighted squared error of an exponentiated Weibull distribution
Table B.5
Overall mean absolute error in m of the four tested 3-parameter distributions. All dist
lowest error for the particular dataset.

Distribution
Dataset

A B C

Translated Weibull 0.0941 0.0532 0.0492
Exponentiated Weibull 0.0105 0.0219 0.0252
Generalized gamma 0.0644 0.0339 0.0150
3-parameter beta 0.0112 0.0256 0.0273
with a given parameter d as

QdðdÞ¼Qðba; bb; dÞ: (A.12)

TheWLS-estimator bd is the d-value thatminimizes this function:

bd¼ argmind½QdðdÞ�: (A.13)

We did not try to find an analytical solution to Equation (A.13).
Instead, we used Matlab’s function fminsearch.m to compute the
minimum.

To evaluate whether the implemented weighted least squares
estimation method works correctly, we estimated the parameters
based on samples that were drawn from a known distribution. We
drew 100 samples, each with 100,000 data points, from an expo-
nentiated Weibull distribution with parameters a ¼ 1, b ¼ 1 and
d ¼ 2. The estimated parameters were ba ¼ 0:996±0:067,bb ¼ 0:998±0:033 and bd ¼ 2:023±0:183 (N ¼ 100; Fig. A14) where
the values after the ±-sign represent standard deviations.

Figure A.14. Box plots of the estimated parameters of an exponentiated Weibull dis-
tribution. The true distribution has the parameters a ¼ 1, b ¼ 1 and d ¼ 2. The thick
line represents the median and the box the 25th and 75th percentile. 100 samples,
each with 100,000 datapoints were used for the estimation.

Appendix B. Comparison with gamma and beta distributions

Two additional 3-parameter distributions were tested: The
generalized gamma distribution that was proposed by Ochi [9],

f ðxÞ¼ c
GðmÞl

cmxcm�1exp½ � ðlxÞc�; (B.1)

and a 3-parameter beta distribution of the second kind that was
proposed by Ferreira and Soares [10],

f ðxÞ¼ a

Bðk;n� kþ 1Þ
ðaxÞn�k

ð1þ axÞnþ1: (B.2)

These distributions were fitted to the six datasets usingMLE and
overall mean absolute error was calculated. The errors were
0.0317±0.0203 m and 0.0294±0.0177 m (N ¼ 6) for the gamma
distribution and the beta distribution, respectively (Table B5).
ributions were fitted using maximum likelihood estimation. Bold letters indicate the

Mean and standard dev.

D E F

0.0662 0.0604 0.0964 0.0699±0.0205
0.0241 0.0174 0.0561 0.0259±0.0158
0.0205 0.0115 0.0447 0.0317±0.0203
0.0308 0.0190 0.0626 0.0294±0.0177
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