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a b s t r a c t

According to design standards, offshore wind turbines need to withstand environmental loads with a
return period of 50 years. This work compares the extreme response along the 50-year environmental
contour with the true 50-year wind turbine response. It was found that the environmental contour
method that is currently described in the IEC design standard for offshore wind turbines can strongly
under-predict the 50-year return value of response variables whose annual maxima typically occur
during power production. The bias in the contour-based estimate of the 50-year response can be
attributed to three sources: (1) the method used to construct the contour; (2) neglecting serial corre-
lation in environmental conditions; and (3) neglecting the short-term variability in the response. In our
analysis the 50-year maximum mudline overturning moment was underestimated by 4e8% by the
contour-based approach that is currently recommended, whereas the bending moment at 10 m water
depth was underestimated by 25e28%. This underestimation was mainly due to ignoring the short-term
variability in the response. The bias associated with contour construction, an effect much discussed in
recent publications, was of much smaller magnitude.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Amajor task in the design process of an offshore wind turbine is
to evaluate the structural integrity of a candidate design. This
evaluation covers fatigue and extreme loads. The widely used in-
ternational standard IEC 61400-3-1 [1] describes the design process
for offshore wind turbines and formulates requirements for struc-
tural reliability. Concerning extreme loads, it requires that loads
that have a return period of 50 years are assessed by environmental
conditions that cause such loads.

To analyze a turbine's response, typically, simulations in the
time domain are performed (see, for example [2]). These simula-
tions are computationally expensive and thus it is important to
decide which combinations of environmental conditions should be
assessed. Some environmental conditions, such as air density or the
(A.F. Haselsteiner), frieling@
E. Mackay), aljoscha.sander@
.-D. Thoben).
type of sea state spectrum, can be kept constant over all simula-
tions, under the assumption that the extreme responses are more
sensitive to other environmental variables that exhibit large
changes over time, such as wind speed, wave height and wave
period. The number of simulations required to cover the full range
of combinations of environmental conditions expected over the
lifetime of the turbine can be very large. Thus, choosing sensible
combinations of environmental variables in which to assess the
turbine response is an important part of the design process.

The environmental contour method [3e6] is an approach to
define such combinations of environmental variables. The method
provides a set of environmental conditions, assumed to cause an
extreme response with a given target return period. The method is
acknowledged to be a simplified approach, providing an estimate of
the true long-term response. Using a full long-term analysis (FLTA)
method (see, for example [7e10]) can provide more accurate esti-
mates. However, FLTA methods require the turbine response to be
estimated for all combinations of environmental variables, and are
therefore not practical for wind turbine design, due to the high
computational costs.
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The authoritative design standard IEC 61400-3-1 [1] requires
designers to estimate extreme responses using an environmental
contour, and does not require the use of FLTA. Researchers, how-
ever, have pointed out that applying an environmental contour
method to a wind turbine is challenging [11e14]. The turbine's
controller actively aims to minimize loading, resulting in non-
monotonic responses for many design variables, such as bending
moments on the tower and blades. This violates one of the key
assumptions underpinning the commonly used inverse first-order
reliability method (IFORM) contour approach e that the failure
region is convex [4]. Moreover, since the response is sensitive to
bothwind andwave conditions, reducing the design conditions to a
two-dimensional contour of wind speed and wave height in-
troduces further uncertainty, since it neglects the stochastic nature
of other variables. Previous studies have proposed modifications to
the contour method described in IEC 61400-3-1, mainly based on
theoretical arguments. However, as yet it is unclear how contour-
based estimates compare to the true long-term response of an
offshore wind turbine and how different effects contribute to
overall bias of the estimate. Although previous research has tackled
this question [11e14], the FLTA methods used in these studies did
not account for the serial correlation in environmental data, which
causes an overestimation of the response [15]. Further, the research
methodology of these studies did not allow to identify the indi-
vidual sources of bias of a contour-based estimate of the response:
Serial correlation, the used definition to construct a contour and a
response's short-term variability all contribute to overall bias.

Here, we aim to answer the question: How accurate are contour-
based estimates of the long-term response, and how much do
different sources of bias contribute to the overall bias of a contour-
based estimate of the extreme response? Due to the research
methodology applied in this study e applying different types of full
long-term analysis based on a 1000-year artificial time series of
environmental conditions e we can tackle these questions to gain
new insights.

This paper is organized as follows. In section 2 we review the
various FLTA methods proposed for estimating the long-term
extreme response of an offshore structure. We discuss the envi-
ronmental contour method and the various approximations that
are involved, relative to FLTA. We also review previous studies on
the environmental contour method applied to offshore wind tur-
bines. Section 3 describes the study's research methodology and
explains how we isolate the various source of bias introduced by
the environmental contour approximation. Then, section 4 presents
a comparison between the true long-term response and contour-
based estimates. Finally, conclusions are presented in section 5.

2. Estimating the long-term extreme response

To estimate the long-term extreme response of a structure to
environmental loading, three things are required: (1) an environ-
mental dataset; (2) a description of the short-term response as a
function of environmental conditions; and (3) a method for
combining the short-term response function with the environ-
mental data to estimate the long-term extreme response. There are
various methods available for calculating the long-term extreme
response. We start by briefly discussing the most accurate types of
methods for this task, various methods for ‘full long-term analysis’
(FLTA). These methods account for the variation of the stochastic
short-term response function over the full range of environmental
conditions. In subsection 2.1 we consider which type of FLTA
method is most appropriate to consider as a reference to compare
contour-based estimates to. In subsection 2.2, we discuss envi-
ronmental contour methods, and the various approximations
introduced relative to FLTA methods.
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2.1. Full long-term analysis methods

The approach taken for FLTAwill depend on the return period of
interest and the length of environmental data available. If the re-
turn period of interest is much less than the length of the envi-
ronmental dataset, then the short-term response function can be
evaluated for each condition in the environmental dataset to obtain
a time series of the response, fromwhich the empirical quantile of
interest can be obtained. Typically, this requires the environmental
dataset to be at least one order of magnitude longer than the return
period of interest to keep sampling uncertainties to a reasonable
level (see, for example [16]). If the return period of interest is
similar or larger than the length of environmental record then we
need a way of fitting a model for the long-term distribution to
extrapolate outside the range of observations. There are two op-
tions for this:

C Environment-based models: A probabilistic model of the
environmental data is constructed and used to extrapolate
outside the range of observations. The extrapolated envi-
ronmental conditions are then combined with the short-
term response function to estimate the long-term extreme
response.

C Response-based models: The environmental data is com-
bined with the response function to obtain a time series of
response. A probabilistic model is fitted to the response data
and used to extrapolate to the return period of interest.

The advantage of response-based methods is that the problem
of predicting long-term extremes is reduced to a univariate prob-
lem. However, the disadvantage is that a separate probabilistic
analysis needs to be conducted for each response of interest.
Moreover, response-basedmethodsmake the tacit assumption that
the behavior of the response function does not change significantly
outside the range of observations. As discussed further below, this
assumption may not be appropriate for a wind turbine response,
such as tower or blade bending moments. For example, at some
locations, the largest responses in short environmental recordsmay
occur in operational conditions, whereas for longer return periods
the largest responses may occur when the turbine is parked or
idling. As the form of the response function can differ in operational
and parked conditions, extrapolating based on observed responses
over a short time period may lead to errors.

Environment-based extrapolation can be more complex to
implement, since it typically involves a multivariate problem, such
as fitting a model for the joint distribution of wind and wave
conditions. However, it has the advantage that a single extreme
value analysis of environmental conditions can be conducted and
used to estimate multiple extreme responses. Moreover, no as-
sumptions are required about how the response function behaves
outside the range of observations, since the response function is
evaluated explicitly for the extreme environmental conditions.

Another key distinction between FLTA methods is the treatment
of serial correlation. Table 1 presents some examples of FLTA
methods using environment-based and response-based extrapo-
lation, categorized by whether they assume (a) individual response
peaks (“all-peaks”); (b) short-term maxima; or (c) storm-peak
values are independent. Here, ‘short-term maxima’ refers to the
maxima in each record of the environmental dataset, typically over
time-scales of 100 minutes - 3 hours, whereas “all-peaks” methods
consider all response peaks within each record as independent
(typically there will be several hundred response cycles per hour).
The correlation time-scales in the short-term response function are
typically much shorter than the time-scales of the environmental
records. This means that if the environmental conditions were



Table 1
Examples of full long-term analysis methods used for estimating extreme responses.

Events considered independent Environment-based models Response-based models

All response peaks Nordenstr€om [22]
Battjes [23]
Tucker [24]
Guedes Soares [25]
Naess [26]

Short-term maxima Krogstad [27]
Videiro and Moan [7]
Moriarty et al. [28]
Fogle et al. [8]
Sagrilo et al. [9]
Muliawan et al. [29]
Videiro et al. [30]
Gramstad et al. [31]

Marshall et al. [32]
Standing et al. [33]
Mazaheri and Downie [34]
Fontaine et al. [35]
Vanem et al. [36]

Storm-peak values Brown et al. [37]
Hansen et al. [38]
Mackay and Jonathan [39]

Tromans and Vanderschuren [40]
Bowers et al. [41]
Incecik et al. [42]
Mackay and Johanning [43,44]
Koohi Kheili et al. [45]
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stationary, then it would be reasonable to assume that extreme
responses separated by, for example, 1 hour, are independent.
However, since the size of the response depends on the environ-
mental condition, and time series of environmental conditions are
serially correlated, time series of extreme responses will also
exhibit serial correlation. Table 1 also includes some examples of
methods for estimating long-term extremes of individual wave or
crest heights, since these can be considered as FLTA methods,
where the response function is the short-termwave or crest height
distribution. The list of works cited in Table 1 is far from exhaustive,
and there is a large volume of literature on this topic. The purpose
of the table is to illustrate the types of methods proposed and the
key assumptions made.

Comparisons between all-peaks, short-termmaxima and storm-
peak methods have been presented in Refs. [9,15,17,18]. All-peaks
and short-term maxima methods neglect the serial correlation in
environmental conditions. Mackay et al. [15] showed that this can
lead to significant positive biases in estimates of long-term extreme
responses,with thebiasbeing largerwhen thedistributionof storm-
peak values has a longer tail. Nevertheless, environment-based
short-term maxima FLTA methods are widely used in ocean engi-
neering and as reference methods for estimating extreme loads on
offshore wind turbines [11e14]. Moreover, they are the basis for the
first- and second-order reliability methods (FORM and SORM) [19]
and inverse FORM and SORMmethods [20,21].

Based on the discussion above, storm-based methods with
environment-based extrapolation are considered most accurate for
estimating the long-term extreme response of an offshore wind
turbine. This method will therefore be used as the reference
method in this study.

2.2. Environmental contours for wind turbine design

Compared to storm-based FLTA methods, the environmental
contour method introduces three simplifying assumptions:

1. The maximum responses in each short-term condition are
independent

2. TheN-year response occurs at anN-year environmental extreme
3. The response in each environmental condition can be evaluated

at a fixed quantile of the short-term distribution function

As discussed in the previous section, the first simplification is
also applied in some commonly used FLTA methods. The second
simplification is related to the assumption about the failure surface,
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made in the construction of the contour. IFORM contours [4] (and
various alternative formulations [46,47], which we also refer to
here as IFORM methods) are based on the assumption that a
structure's failure surface can be linearized at the design point (the
point on the failure surface with the highest probability of occur-
rence). Under this assumption, multivariate extreme sets are
defined as half-plane regions, corresponding to the linearized
failure surface, which contain a fixed probability level a. The
environmental contour is then defined as the boundary of the re-
gion consisting of the intersection of all such extreme sets. The
alternative assumption is to assume that structural failure occurs
anywhere outside the design region (see, for example [48,49]).
Under this assumption, an environmental contour is defined as the
boundary to a region containing probability 1 � a. Differences
between these two types of contour are discussed in Ref. [6].

The third simplification is equivalent to assuming the short-
term response function is deterministic rather than random, with
the deterministic response defined as the response at the fixed
quantile of the short-term distribution function. As the response of
the structure is only evaluated in environmental conditions along
the contour, this neglects the probability that the 50-year response
could be caused by a high response in less extreme environmental
conditions or a low response in a more extreme condition. The
effect of short-term variability is usually accounted for by evalu-
ating the short-term response at a quantile higher than the median
value [4].

In addition to the three simplifying assumptions listed above,
the accuracy of the environmental contour method is dependent on
three additional factors:

4. The reduction of a high-dimensional multivariate problem to a
2D or 3D problem

5. The accuracy of the joint probability model for the environ-
mental variables

6. The accuracy of the response model

These factors also influence the accuracy FLTA methods. The
response of many offshore structures are dependent on multiple
environmental variables (see the discussion in subsection 3.1).
However, due to the difficulty in estimating joint distributions in
high dimensions and the number of simulations required to char-
acterize the response in a high dimensional space, it is normally
assumed that certain variables are either fixed or in fixed relation to
other variables, so that only two or three variables need to be
considered.



Fig. 1. Design approach in IEC 61400-3-1 [1]. In design load case (DLC) 1.6, loads are
evaluated at points along a 50-year wind-wave environmental contour, for wind
speeds between cut-in and cut-out. At higher wind speeds, DLCs 6.1 and 6.2 require
that the 50-year marginal significant wave height value, Hs50, and the reference wind
speed value are combined. Reference wind speeds are based on the turbine classes
defined in IEC 61400-1 [55] and must be higher than a site's 50-year wind speed.
Circles show environmental conditions that must be considered based on the three
load cases. Note that Hs50 does not necessarily coincide with the highest point along
the contour in a 50-year IFORM contour, but that it depends on the order of the var-
iable transformation [6].
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The environmental contour method is used to establish design
loads for offshore wind turbines (see, for example, [11e14,50e53];
Table 2). In design load case (DLC) 1.6 in IEC 61400-3-1 [1], it is
required that the design is checked for combinations of wind speed
and significant wave height along a 50-year environmental contour
(Fig. 1). Compared to other marine structures, applying a contour
method to offshore wind turbine design presents particular chal-
lenges. The environmental contour method was mainly developed
for structures for which the wave height and period have the
dominant influence on the response. For an offshore wind turbine
both wind and wave loads are equally important. Thus, the effect of
reducing the wind turbine design problem to a 2D contour may
have a greater impact than for other structures.

The IEC standard recommends to use IFORM contours for DLC
1.6. As discussed above, the IFORM approach assumes that a
structure's failure surface can be linearized at the design point.
While the lineariziation is reasonable for manymarine structures, it
is problematic for many wind turbine response variables. Modern
wind turbines have control systems that optimize power output
while reducing loads. The controller is designed to extract as much
power as possible from the wind until the power output reaches
the rated capacity, at the rated wind speed, which is typically
around 11e13 m s�1. Above this wind speed, the blades are pro-
gressively pitched to reduce loads while maintaining constant po-
wer output. Finally, at the cut-out wind speed, turbines stop
producing power and the blades are fully pitched out of the wind to
minimize loads. Consequently, some response variables such as the
mudline overturning moment do not increase monotonically with
wind speed (see Fig. 2; [12,51,54]).

Thus, researchers have pointed out that such an IFORM contour
should not be applied directly in offshore wind turbine design (see,
for example [12e14]). Essentially, the non-monotonic response
over wind speed leads to two distinct regions of high response
along the environmental contour such that the failure surface
cannot be well approximated by linearizing it at a single point
(Fig. 2). As a solution, Li et al. [12] proposed to use a procedure that
involves checking multiple environmental contours with different
return periods. Horn and Winterstein [13] also acknowledged the
problem and proposed to divide the wind-wave variable space,
with the turbine in power production and parked mode, into four
Table 2
Environmental contour methods proposed for analyzing offshore wind turbine reliability.
peak period.

Source and year Contour
variables

Additional deterministic
variable

C

Saranyasoontorn and Manuel
[11],

2006

V, Hs e 5

Li et al. [12,51],
2016, 2017

V, Hs, Tp e M

Horn and Winterstein [13]
2018

V � Hs & Hs � Tp Tp and V, respectively F
p

Velarde et al. [14]
2019

Hs, Tp V M

Liu et al. [52]
2019

V, Hs Tp, median Tp|V, Hs is used 5

IEC 61400-3-1, DLC 1.6 [55]
2019

V, Hs Tp, highest load Tp|V, Hs is useda 5

Chen et al. [53]
2020

V, TI, Hs, Tp e 5

This work V, Hs Tp, median Tp|V, Hs is used 5
This work V, Hs Tp, highest load Tp|V, Hs is used 5
This work V, Hs, Tp e 5

a Guidance on choosing values is not definitive. The standard's text reads “The severe s
the associated wave period and the mean wind speed, has a return period of 50 years.
extreme wave height. In the absence of a more sophisticated probabilistic assessment, des
the highest loads acting on an offshore wind turbine.”
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sub-populations and to construct one contour per sub-population.
Velarde et al. [14] focused on the sea state's frequency variation and
proposed an environmental contour method to assess the wave
peak period that causes the highest response.

The factors that are relevant for all marine structures have
already been analyzed to a great extent in the literature. The un-
certainty of choosing a joint model has been analyzed in a recent
benchmarking study on environmental contours [56,57]. Different
definitions for contour exceedance have been analyzed [6,58e60].
Short-term variability has been discussed in an early paper by
Winterstein et al. [4] and since then analyzed for various structures
[29,61]. Practical methods for accounting for short-term variability
in contour methods are discussed in Refs. [62,63]. The effect of
V¼wind speed, TI¼ turbulence intensity, Hs ¼ significant wave height, Tp ¼ spectral

ontour type Analyzed
here

0-year IFORM e

odified IFORM that restricts the contour to wind speeds <25 m s�1 e

our 50-year IFORM contours, one per variable space sub-
opulation

e

ultiple N-year IFORM contours, value of N determined based on V e

0-year IFORM X

0-year IFORM X

0-year IFORM and modified IFORM e

0-year highest density X
0-year highest density X
0-year highest density X

ea state shall include the extreme individual wave height that, in combination with
The designer shall take account of the range of wave period, T, appropriate to each
ign calculations shall assume values of wave periods within this range that results in



Fig. 2. Non-monotonic response of an offshore wind turbine (top) and the associated
problem when an environmental contour is used for structural design (bottom). Top:
Due to a turbine's control system, response variables such as the overturning moment
or the fore-aft shear force are non-monotonic (see, for example [12,51,54]). Bottom: As
a consequence, the failure region is non-convex and the contour has two regions of
high response. This can be problematic for IFORM contours, which approximate failure
surfaces as a hyperplanes, which is only conservative if the failure region is convex.

Fig. 3. Research methodology. This study's goal is to compare the “true” long-term
response with an estimate based on an environmental contour. To enable this com-
parison a response emulator and an artificial 1000-year time series of environmental
conditions are created.
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serial correlation on environmental contours and estimates of long-
term extreme loads has been discussed in Refs. [15,47]. The two
challenges associated with offshore wind turbines, dealing with the
non-monotonic response and jointly dealing with wind and wave
variables, are less understood.

The problem of the non-monotonic response violating the as-
sumptions of IFORM contours can be addressed by using a contour
that is defined based on the total exceedance probability outside
the contour. For such contours a non-monotonic response does not
violate any assumptions [6,48,49]. Non-monotonic responses are
problematic for IFORM contours because they can lead to non-
convex failure regions and IFORM is only conservative for convex
failures regions. Total exceedance contours, such as highest density
contours [48] and Chai and Leira's inverse second-order reliability
method (ISORM; [49]) contours yield always conservative envi-
ronmental design conditions (provided that short-term variability
is accounted for).

For addressing the relevant variables e wind speed, wave
height, wave period and potentially turbulence intensity (see
Ref. [53]) e in a contour method, there is no clear solution in the
literature. The design standard IEC 61400-3-1 [1] suggests that a 2D
wind speed - wave height contour should be constructed and that
spectral peak period should be chosen as the period that causes the
highest loads at the particular combination of wind speed andwave
height. While this approach sounds somewhat sensible, this
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combination of probabilistic and deterministic choices of variables
cannot be interpreted consistently in terms of failure probability
and implied reliability. Velarde et al. [14], however, proposed that
the joint distribution of wind speed, significant wave height (Hs)
and spectral peak period (Tp) shall be used to construct multiple
Hs � Tp contours instead. Horn and Winterstein [13] proposed to
use multiple 2D contours, both wind speed - wave height and wave
height - wave period to deal with the three-dimensional variable
space. In principle, environmental contour methods generalize to
higher dimensions [4,48,64] such that one could also construct a
single three-dimensional wind speed, wave height, wave period
surface, (which we also refer to as a “contour”, for consistency).
Currently, it is unclear which of these approaches is best suited to
deal with the environmental variables that are relevant to offshore
wind turbine design.

Past works have analyzed the design loads on wind turbines
using various contour methods [11,12,14,51e53] and have proposed
new contour methods based on theoretical arguments. Where the
environmental contour method for wind turbines has been
compared to FLTA, the FLTA method applied has been based on the
assumption that hourly environmental extremes are independent.
As discussed in Ref. [15], hourly observations are strongly serially
correlated and neglecting serial correlation can result in positive
biases in estimates of long-term extreme response. Thus, as yet, no
study has compared response estimates from contours with the
true unbiased long-term response of an offshore wind turbine. This
study aims to provide such a comparison.

3. Research methodology

This study's overall design is summarized in Fig. 3. The goal is to
compare the “true” 50-year long-term response with an estimate
based on an environmental contour. Of the factors affecting the
accuracy of the long-term response estimates, discussed in
subsection 2.2, we do not consider the accuracy of the response
model or the accuracy of the statistical model for environmental



Fig. 4. Metocean dataset. (aeb) A 50-year period of the coastDat-2 dataset [67] at the location of the FINO 1 research platform was used to build a statistical model. The three
variables considered were 1-hour meanwind speed at hub height, 1-hour significant wave height and 1-hour spectral peak period. (ced) An artificial dataset was created that spans
1000 years (the first 50 years are shown here), with statistical characteristics matching the coastDat-2 dataset. The dataset was created using a block-resampling method, where
block-peak values are (shown as circles) were drawn randomly from a joint model and measured blocks are resampled and rescaled so that the peak values match the simulated
values.
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conditions, since these factors influence both contour and FLTA
methods. Instead, we focus on isolating the influence of the ap-
proximations made in the environmental contour method relative
to FLTA.

We use the 5 MW NREL reference wind turbine [65] and
consider the FINO 1 research platform site in the German North Sea
[66]. Because performing dynamic multiphysics simulations of a
wind turbine with a state-of-the-art code such as openFAST re-
quires CPU computation time in the same or a higher order of
magnitude as the simulation time, simulating times series that
cover multiple years is impractical. Thus, we created a response
emulator based on 516 1-hour multiphysics simulations. This
response emulator is a parametric statistical model that outputs a
random 1-hour maximum response for a given environmental
condition. Additionally, to estimate the 50-year response accu-
rately, a much longer time series than measurements or hindcasts
offer is required. Consequently, we created an artificial 1000-year
time series. This time series and the response emulator were
used to accurately estimate the 50-year response. Finally, we also
used the response emulator and the empirical joint distribution
derived from the artificial time series to calculate contour-based
estimates of the 50-year response. The methodology is described
in detail in the following subsections.

3.1. Environmental conditions

To enable a comparison between a very accurate estimate,
(which we refer to as the “true” long-term response), and estimates
950
from contour methods, we needed to consider a time series that is
several orders of magnitude longer than the return period of in-
terest. Typical site-specific datasets of wind speed and wave height,
however, only cover periods of the order of 10e100 years. To
circumvent this problem, here, we generated an artificial time se-
ries, based on the statistical characteristics of a 50-year dataset
from the coastDat-2 hindcast [67,68] at the location of the FINO 1
research platform in the German North Sea (Fig. 4). This 50-year
dataset was also used in a recent benchmarking exercise on envi-
ronmental contours [56].

The artificial time series was created using a block resampling
method [39]. The method involves three steps. In the first step, the
time series is divided into non-overlapping blocks, where the peaks
of each variable of each block can be considered approximately
independent from adjacent blocks (in a similar manner to a peaks-
over-threshold analysis). In the second step, a joint distribution
model is fitted to the block-peak values. In the third step, random
vectors of peak values are simulated from the fitted model and
measured blocks with peak values closely-matching the simulated
values are selected at random and rescaled so that the resampled
and simulated peak values coincide. The artificial time series is
composed of the resampled and rescaled blocks from the original
time series. The idea is that, provided that the measured blocks are
only scaled by a small amount, the resampled time series should be
physically realistic and closely match both the temporal and joint
dependence structure of the measured time series. The resampled
time series is not continuous at the block boundaries. However, the
blocks are defined so that the peak values do not occur near the
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block boundaries, so that the temporal correlation structure around
the peak values is preserved. Further details of the procedure used
to generate the artificial time series are presented in the
supplemental material.

The artificial time series covers 1000 years. Although the focus
of the present work is to estimate 50-year responses, a much longer
time series is required so that sampling uncertainties are reduced.
For example, in a given 50-year time series, the sampling uncer-
tainty in the largest value is extremely high. It can be shown that a
1� 2a confidence interval (CI) for the return period associated with
the largest observation in an N-year time series tends to ð � N=
logðaÞ;�N=logð1�aÞÞ as N / ∞ [16]. So a 95% CI for the return
period of the largest response in a 50-year time series would be
(13.6, 1975) years. The width of the CI decreases as the ratio of N/T
increases, whereN is the length of the time series and T is the target
return period (see Ref. [16] for a discussion of this). A 95% CI for the
return period associated with the 50-year response estimated from
a 1000-year time series is (33.9, 81.6) years (CIs for the estimated
responses are shown in Fig. 4).

The environmental model comprised a joint distribution for
block maxima of wind speed, V, significant wave height, Hs, and

wave steepness, S ¼ 2pHs=gT2p (where g is the acceleration due to
gravity). Comparisons of measured and simulated values of these
variables are shown in Fig. 4.

In the present work, we have only considered the variation of
wind speed, significant wave height and wave steepness. The
environmental variables that were assumed to remain constant
over time are listed in Table 3.

3.2. Wind turbine response

3.2.1. Turbine properties
We used the 5 MW NREL reference wind turbine [65] with the

monopile design that was proposed by Bachynski et al. [69]. Fig. 5
shows the turbine's main dimensions, the three variables that were
varied among simulations e wind speed, significant wave height
and spectral peak period e and the response variables that were
analyzed, the bending moment at 10 m water depth and the
mudline overturning moment. The turbine is controlled via a
variable-speed-variable-pitch scheme, with a cut-in wind speed of
3 m s�1 and a cut-out wind speed of 25 m s�1.

3.2.2. Multiphysics simulations
We performed aero-hydro-servo-elastic simulations using the

code openFAST ([70], version 2.2.0). OpenFAST is a multiphysics
simulation code that allows the coupled simulation of aero-
dynamics (“aero”), hydrodynamics (“hydro”), structural dynamics
(“elasto”) and a controller (“servo”). The code consists of several
software modules that deal with different types of physics. The
software module AeroDyn [71] handles the aerodynamics and is
based on the principle of actuator lines. We used its
Table 3
Environmental variables that are constant over all simulations.

Air density 1.225 kg m�3

Wind speed profile VðzÞ ¼ Vhubðz=zhubÞ0:14
Turbulence intensity During power production:

Above 25 m s�1: 11% (IEC 6
Water density 1025 kg m�3

Wave spectrum JONSWAP spectrum with g

Wave directional spread 0 deg
Wave mean direction 0 deg
Wind mean direction 0 deg
Current velocity 0 m s�1

Water depth 30 m
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implementation of the blade element momentum method. The
software module HydroDyn handles the hydrodynamics. We used
its implementation of strip theory that is based on Morison's
equation and linear wave theory to simulate wave loads. Structural
mechanics were handled by the modules ElastoDyn (rotor blades,
tower and transition piece) and SubDyn ([72]; monopile).

Simulations were run for a total duration of 1 hour and 30 s,
however, the first 30 s were discarded because they were only
intended to initialize the simulation to a dynamic state. The time
step size was 12.5 ms. We performed simulations which covered
the range of observed wind speeds, wave heights and wave periods
(Fig. 6). Thus, simulations were performed for wind speeds be-
tween 1 and 45m s�1, significant wave heights between 0 and 15m
and spectral peak periods between ca. 3 s and 18 s. The variable
space was evaluated by performing simulations at four different Tp
values per V� Hs combination. These four “slices” of Tp through the
3-dimensional variable space were defined as:

tp1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2phs

g,0:06
̄
6

vuut ; tp2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2phs
g,0:04

s
; tp3 ¼ tp2 þ

8

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hs þ 2

p ;

tp4 ¼ tp2 þ
20

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hs þ 2

p ; (1)

where g ¼ 9.81 m s�2 is the acceleration due to gravity. In total 516
simulations were performed to cover the variable space.

3.2.3. Statistical response emulator
We built a response emulator that returns a random 1-hour

maximummoment at 30 mwater depth for a given combination of
1-hour mean wind speed v, significant wave height hs and peak
period tp. In principle, such a response emulator can be defined in
various ways. Here, we chose to define the emulator as a parametric
distribution of the short-term response maxima such that a
random 1-hour maximum can be drawn by calling the distribu-
tion's inverse cumulative distribution function. Let F1h(r|v, hs, tp)
denote the conditional distribution function of the 1-hour
maximum mudline overturning moment. Thus the 1-hour
maximum overturning moment is a random variable R and its
realization is denoted r. Then the response emulator is the inverse
distribution function:

F�1
1h ðpjv; hs; tpÞ; (2)

which can be called with a value for p 2 [0, 1] to evaluate a given
quantile of interest. To draw a random 1-hour response realization,
we simulated uniformly distributed randomvariables p2 [0,1] and

then calculated F�1
1h ðpjv;hs; tpÞ.

The distribution of short-term response maxima can be esti-
mated using various techniques, such as block-maxima, peaks-
over-threshold, or up-crossing rate methods [73e76]. Here, we
ca. 14%e50% (wind turbine class B; IEC 61400-1 normal turbulence model)
1400-1 normal turbulence model)

¼ 3.3



Fig. 5. 5 MW NREL reference wind turbine [65] with the monopile foundation presented by Bachynski et al. [69]. In this study, we varied the three environmental conditions 1-hour
mean wind speed (V), significant wave height (Hs) and spectral peak period (Tp). For simplicity, only two response variables, the mudline overturning moment (R) and the bending
moment at 10 m water depth (B), were analyzed.

Fig. 6. Environmental conditions at which multiphysics simulations were performed and which were used to build the statistical response emulator (red diamonds). A total of 516
different environmental conditions were evaluated (129 wind speed - wave height combinations and for each wind - wave combination four different spectral peak period values;
tp1, tp2, tp3, tp4). Black dots show the environmental conditions within the first 50 years of the dataset for the FINO 1 site.

A.F. Haselsteiner, M. Frieling, E. Mackay et al. Renewable Energy 181 (2022) 945e965
used a block-maxima method, with F1h modeled using the gener-
alized extreme value (GEV) distribution. The location, scale, and
shape parameters, (m, s, x), were modeled as parametric functions
of wind speed, wave height and wave period. The cumulative dis-
tribution function for the 1-hour maximum response is then given
by
952
F1h
�
r
��v; hs; tp� ¼

8>><
>>:

exp
�
� exp

�
� r � m

s

��
; x ¼ 0;

exp
�
�
�
1þ x

r � m

s

��1=x

þ

	
; xs0;

(3)
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where ð,Þþ ¼maxf,;0g, and, for simplicity, the dependence of the
parameters (m, s, x) on (v, hs, tp) has not been written explicitly.
Various methods can be used to estimate the models for (m, s, x) as
functions of (v, hs, tp), such as radial basis function models or
Gaussian process regression (Kriging). In this work we have opted
to use simple parametric models. These models may not provide
the optimal fit, but do allow the results of the study to easily be
replicated. As described further below, the response emulator was
found to be sufficiently representative for the purpose of the study.
The fitted functions for m, s and x are given in the supplemental
material and contain a total of 33 parameters.

The process to establish the response emulator involved the
following steps:

1. 1-hour simulations were conducted across the wind speed,
wave height, peak period variable space.

2. Each 1-hour simulation was divided into 1-min blocks (Fig. 7).
3. GEV distributions were fitted to the block maxima in each

simulation.
Fig. 7. Time series of hourly simulations at 3, 9, 17 and 26 m s�1 (from top to bottom) at a sea
the right panels quantile-quantile plots of the generalized extreme value distributions (GEV
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4. The continuous dependence functions m(v, hs, tp), s(v, hs, tp) and
x(v, hs) were fitted based on the various estimates of the pa-
rameters at discrete points of the variable space.

5. The 1-min maxima distribution was transformed into a 1-hour
maxima distribution: F1hðrÞ ¼ ½F1minðrÞ�60.

Fogle et al. [8] found that the maxima of 40e60 s blocks can be
considered independent in wind turbine load responses. While we
did not test for independence here, in some time series the 1-min
maxima appear to be independent while other time series have
some low-frequency modes that suggest that 1-min maxima are
not truly independent.

The parameter values of the GEV vary across the variable space,
with discontinuities at the cut-out wind speed (figures are shown
in the supplemental material). While the estimates of the location
and scale parameters vary relatively smoothly over the discrete
simulation points, the shape parameter is more erratic, due to
sampling variability.

The parametric response emulator captures important charac-
teristics of the multiphysics simulations. This can be seen by
state of hs ¼ 1 m and tp ¼ 6.51 s. Red crosses represent the maxima of 1-min blocks. In
Ds) that were fitted to the block maxima are shown.
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comparing the GEV's parameter values over the variable space and
by comparing realized 1-hour responses within the multiphysics
simulations with random samples drawn from the emulator
(Figs. 8e10). At calm sea (hs ¼ 0 m), the multiphysics simulations
describe a characteristic curve when the realized 1-hour maximum
overturning moment is plotted over wind speed (see Fig. 8):

C The response increases roughly linearly until the rated wind
speed of 11.4 m s�1,

C then it increases slower and with reduced short-term
variability,

C at ca.17m s�1 the response starts to decreasewith increasing
wind speed, with high short-term variability, and

C finally, starting at 25 m s�1, when the turbine switches into
parked mode, the response drops and then increases
quadratically with wind speed.

The response emulator reproduces these features of the
response curve.

Overall, the response emulator for the overturning moment at
30 mwater depth showed good agreement with the realizations of
the multiphysics simulation. Differences were mostly below 20%
(Fig. 9) and scatter plots suggested that there was no systematic
over- or under-estimation from the emulator (Fig. 10).

In addition to the 30 m response emulator, we built an emulator
for the bending moment at 10 mwater depth. At 10 mwater depth,
Fig. 8. Responses at different wind speeds during calm sea (hs ¼ 0 m). Maxima from
multiphyiscs simulations (top) and the response emulator (bottom) showed good
qualitative agreement. The mudline overturning moment peaked during power pro-
duction, but this peak would get exceeded at much higher wind speed during parked
mode (ca. 45e50 m s�1). In parked mode the wind turbine did not vary its pitch angle
anymore such that the overturning moment increases e like the drag force e with the
square of the wind speed.
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the wind's relative contribution is higher and the wave's relative
contribution lower than at 30 mwater depth. Thus, annual maxima
of the 10 m moment can occur at different environmental condi-
tions than annual maxima of the 30 m moment. The response
emulator for the 10 m moment was defined based upon the 30 m
emulator, assuming that wind and wave can be approximated as
point forces at known heights (further details are given in the
supplemental material). The median responses of both emulators
are visualized in Fig. 11.
3.3. Isolating the effect of approximations in the environmental
contour method

To isolate the effects of each approximation introduced in the
environmental contour method, four quantities were derived from
the 1000-year time series, corresponding to the 50-year responses
estimated under various assumptions. For each 1-hour time step of
the 1000-year series, both a stochastic and deterministic response
was generated. The deterministic responses were calculated by
always using the median short-term response instead of a random
quantile. The 50-year responses for the stochastic and deterministic
time series were then calculated either from the annual maxima, or
from all hourly values, under the assumption of independence. In
both cases, the empirical distribution derived from either the
annual maxima or hourly values is used to calculate return values.
The various return value estimates are denoted:

C xs50: calculated from annual maxima of the time series of
stochastic responses

C xd50: calculated from annual maxima of the time series of
deterministic responses

C ~xs50: calculated from all hourly-maximum stochastic re-
sponses, under the assumption of independence

C ~xd50: calculated from all hourly values of deterministic re-
sponses, under the assumption of independence

Under the assumption that the artificial time series and the
response emulator represent reality, the estimator xs50 will be un-
biased. It will have some degree of sampling uncertainty though as
both, blocks of the artificial time series and hourly maximum re-
sponses given an environmental condition are sampled from dis-
tributions. For simplicity, we call xs50 the “true response”.

By comparing xs50 and ~xs50 (or xd50 and ~xd50), we can assess the
impact of neglecting serial correlation in the metocean conditions.
By comparing xs50 and xd50 (or ~xs50 and ~xd50), we can assess the
impact of assuming a deterministic response. The impact of
assuming a linearized failure surface and reducing the design
problem to a 2D contour is assessed by comparing various contour-
based response estimators: Two based on 2D IFORM contours [4],
two based on 2D highest density contours [48] and one based on a
3D highest density contour. We denote these estimators as xc50. The
2D contours were calculated from wind speed - wave height joint
distributions and a fixed relationship for the peak period (or,
equivalently, wave steepness) given a wind speed and wave height
is assumed. For the 2D contours, the peak period associated with
each design condition was calculated based on the observations
with the highest 1% of significant wave height values for a given
wind speed interval (see Fig. 12). Two different methods were used
to establish a relation between steepness and wind speed for large
values of significant wave height. In one case, the median steepness
for the high Hs records was calculated as a function of wind speed.
The empirical median values, smedian, were then approximated us-
ing the function



Fig. 9. Response across the wind speed - wave height variable space. Difference between the response from the multiphyiscs simulation and the emulator's median response
predictions were below 20% for most environmental conditions.
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smedian ¼ 0:012þ 0:0021
1þ exp½�0:3ðv� 10Þ�; (4)

where steepness is calculated based on peak spectral period, tp, and
v is in ms�1. In the other case, based on a visual inspection of the
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data, the maximum steepness at a given wind speed and large Hs

was approximated as

smax ¼


0:021þ 0:0017v if v � 19 m s�1

0:054; otherwise:
(5)



Fig. 10. Comparison between multiphysics simulations and the response emulator. Top: Median 1-hour maximum from emulator versus realized maximum in the multiphysics
simulation. Bottom: Median 1-hour maximum from emulator versus median 1-hour maximum from the locally fitted generalized extreme value (GEV) distribution. Dashed lines
represent perfect agreement between emulator and simulation.

Fig. 11. Median response of the two statistical response emulators at tp ¼ tp2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2phs=g,0:04

p
where g ¼ 9.81 m s�2. At the cut-out wind speed of 25 m s�1 the responses have a

discontinuity. There, the 10 m moment generally drops while the 30 m moment drops at low wave heights, but jumps at high wave heights.
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Since the turbine's eigen period is around 3 s, for a given value of
significant wave height and wind speed, sea states with higher
steepness lead to larger loads. The contour estimates using smax, will
therefore be more conservative than those using smedian. However,
since at this location thehighest values of steepness tend tooccur for
lower values of Hs at a given wind speed (see Fig. 4), assuming that
the highest loads occur along the environmental contourmaynot be
conservative, since a lower value of Hs with a higher value of
steepness may lead to larger loads in this case. This effect cannot be
represented using the 2D contours, but can be accounted for using a
3D contour. For the 3D highest density contour, a deterministic
relationship for Tp|V, Hs is not required, as the relation between the
three variables is already specified by the contour.

The underlying joint distribution to calculate the contours was
the empirical distribution, derived from an artificial time series
with a length of ca. 2.5 million years, generated using the same
956
method used to generate the 1000-year times series. For all five
contours, the estimate for the 50-year extreme moment was taken
as the point along the contour that caused the highest response
(using the response emulator).

4. Results and discussion

Fig. 13 shows response time series for the 10 m and 30 m
moment. In the top two panels the response is assumed to be
deterministic (this is achieved by evaluating the response emulator
at the 0.5 quantile at every time step) while in the bottom two
panels the response is stochastic. In all cases the response time
series has a roughly linear relationship with the wind speed time
series if the wind speed is below ca. 15 m s�1. As expected, the
moment at 30 m water depth is higher than the moment at 10 m
water depth.



Fig. 12. 50-year environmental contours. The contours are based on the empirical distribution of an artificial time series with a length of ca. 2.5 million years. Design conditions are
plotted as circles. (a) Two-dimensional IFORM and highest density contours. Two types of deterministic relationships for steepness conditional on wind speed were considered such
that four different 2D contours were constructed. In the first type steepness was modeled as the median steepness of the highest 1% wave heights and in the second type it was
modeled as the maximum steepness of the highest 1% of wave heights (right panel). (b) Slices of the three-dimensional highest density contour. A threshold of 40 data points per
cell defines the constant density contour.
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While short periods of the four response time series showed
similarities (Fig. 13), the annual maxima of the complete 1000-year
time series have different characteristics (Fig. 14): Annual maxima
of the 30 m moment are higher than annual maxima of the 10 m
moment and have a greater variability. The 10 m moment annual
maxima vary between ca. 110 and 130MNm (deterministic) and ca.
130 and 180MNm (stochastic), the 30 m moment annual maxima
vary between 150 and 300MNm (deterministic) and 180 and
420MNm (stochastic). This difference can be explained by the type
of wind-wave environmental conditions that cause the annual
maxima. Fig. 15 shows the combinations of wind speed and sig-
nificant wave height leading to the annual maximum bending
moment at 10 m and 30 m, with the color denoting the corre-
sponding size of the annual maximum value. The 10 m moment
extremes are mostly caused by environmental conditions of me-
diumwind speeds (13e20 m s�1) during power production, but the
largest values of the annual maximum 30 m moment are mostly
caused by high wind speed - high wave height events when the
turbine is shut down. The 50-year responses for the four considered
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cases are listed in Table 4, as 114MNn (10 m, deterministic),
252MNm (30 m, deterministic), 158MNm (10 m, stochastic) and
305MNm (30 m, stochastic).

The different response characteristics also influence the accu-
racy of contour-based estimates. Lines of constant response of the
30 m moment show that there is only one region of high response
along the IFORM contour (Fig. 16). For the 10 m response, however,
there are two regions of high response along the contour and
response lines at the level of the contour-based estimate are
strongly non-convex. This suggests that contour-based estimates
will be less conservative for the 10 mmoment than they are for the
30 mmoment. In particular, for IFORM contours, the assumption of
a linearized failure surface is justified for the 30 m moment but is
violated for the 10 m moment.

Fig. 17 shows the contours and the response values at their
designs conditions. When the short-term response was evaluated
at the 0.5 quantile e as prescribed in the wind turbine design
standard IEC 61400-3-1 [1]e all contour-based estimates of the 50-
year 10 m moment, b50, were lower than the true b50 value. For the



Fig. 13. Snippets of the hourly response time series simulated with the statistical response emulator for the moment at 10 mwater depth and at 30 mwater depth. Top two panels:
Deterministic response (the emulator was evaluated at the 0.5 quantile). Bottom two panels: Stochastic response (the emulator was evaluated at random quantiles).
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30 m moment, the two IFORM-based estimates were lower than
the true r50 value while the highest density-based estimates were
higher than the true value. While not prescribed in IEC's standard
[1], for othermarine structures, it is commonpractice to account for
the response’ short-term variability by evaluating the contour's
design at a response quantile higher than 0.5.Which quantile needs
to be chosen to account for short-term variability depends upon
response characteristics of the application of interest. For example,
Baarholm et al. [61] found that for the natural gas platform “troll A”
the required quantile varied for the considered response variables,
but was about 0.8.

Here, we found that for the 50-year 10 m moment, b50, IFORM
contours needed to be evaluated at the 0.99 quantile, 2D highest
density contours at the 0.9 quantile and 3D highest density con-
tours at the 0.8 quantile (Fig. 18). Note that this compensation did
not only account for the effect of the response's short-term vari-
ability, but also balanced the effects of serial correlation and of
contour construction: Contours were derived from the joint dis-
tribution of all 1-hour environmental conditions. Some of the
environmental conditions that occurred at the tails of the joint
distribution, however, were serially correlated, causing the contour
to artificially inflate. Derbanne and de Hauteclocque [47] explain
this effect and show de-clustering can be used to eliminate this
effect. Contour construction is another source of bias: While IFORM
contours use a non-conservative definition of exceedance for
offshore wind turbines (due to the linearization of the failure sur-
face), highest density contours use an overly conservative defini-
tion of exceedance (some of the datapoints that are counted as
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exceedance do not lead to failure-relevant loads). The effect of the
type of contour on the conservatism is discussed in Refs. [6,60].

The effect of the contour type (IFORM, highest density, steep-
ness assumption) can be better analyzed if short-term variability is
“turned off”. Thus, we can compare contour-based estimates with
FLTA based estimates where the short-term response is determin-
istic. As contours are derived from the serially correlated hourly
data, an appropriate comparison is the 50-year quantile from the
continuous 1000-year deterministic response time series. This
quantile is also affected by serial correlation, but not by the re-
sponse's short-term variability. For the 10 mmoment, this estimate
is 119MNm. When the median steepness value is used, the IFORM-
based estimate is 114MNm and the HD-based estimate is 133MNm
(Table 4). Thus, as expected, IFORM's definition of exceedance is
non-conservative while's HD's definition of exceedance is overly
conservative. This comparison also suggests that using the median
steepness of the highest 1% of waves at a given wind speed is
conservative enough because when the maximum steepness is
used the IFORM-based estimate is 119MNm, which is the same as
the estimate from the 1000-year time series. We know, however,
that by IFORM's contour construction definition, we should get a
response less than 119MNm. Thus, in the maximum steepness case
IFORM's non-conservative exceedance definition is balanced by the
overly conservative assumption of a too high steepness value and
consequently a too low spectral peak period value.

The different types of biases are visualized in Fig. 19. They
comprise bias due to contour construction, due to serial correlation
and due to short-term variability. The analysis shows that bias due



Fig. 14. Full 1000-year response time series (moment at 10 mwater depth and at 30 mwater depth). Top two panels: Deterministic response (the emulator was evaluated at the 0.5
quantile). Bottom two panels: Stochastic response (the emulator was evaluated at random quantiles). Red crosses represent annual maxima.

Fig. 15. Top row: Combinations of wind speed and significant wave height where the annual maximum bending moments occurred in the 1000-year time series. Color of points
indicates corresponding annual maximum load. Bottom row: Exceedance probability of annual maximum moment.
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Table 4
Comparison of estimates for the 50-year extreme moment at 10 and 30 mwater depth (b50 and r50, respectively). The contour-based estimates were calculated by evaluating
the short-term response at the 0.5 quantile. b*50 and r*50 are the estimated 50-year moments normalized by the true 50-year moments at 10 and 30mwater depth, respectively.

Method b50 (MNm) b*50 (�) r50 (MNm) r*50 (�)

Annual maxima of 1000-year time series with a stochastic short-term response (“true”), xs50 158 1.000 305 1.000
Annual maxima of 1000-year time series with a deterministic short-term response, xd50 114 0.721 252 0.827
Continuous 1000-year response time series with a stochastic short-term response, ~xs50 158 1.000 312 1.025
Continuous 1000-year response time series with a deterministic short-term response, ~xd50 119 0.752 276 0.905
2D IFORM contour with median steepness 114 0.722 281 0.921
2D IFORM contour with high steepness 119 0.750 292 0.957
2D HD contour with median steepness 133 0.843 329 1.080
2D HD contour with high steepness 137 0.867 339 1.111
3D HD contour 141 0.889 358 1.174

Fig. 16. Lines of constant response and IFORM contour. The extreme response of the 30 m water depth moment is dominated by high wind speed - high wave height events while
the extreme response of the 10 m water depth moment is influenced by both, mid wind speed and high wind speed events. The IFORM contour's assumption of a single linearized
failure surface roughly holds at 30 m water depth, but is violated at 10 m water depth because the failure surface has two “regions of high response” along the environmental
contour. Spectral peak period was calculated according to Equation (4).
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to contour construction can lead to an under- or overestimation of
the response. The bias due to serial correlation always leads to an
overestimation and the bias due to neglecting short-term vari-
ability always leads to an underestimation. As a consequence,
overall bias can be positive or negative.

The biggest source of bias in the estimate of b50 is due to the
response's short-term variability. Because contour design condi-
tions are evaluated at a single short-term response quantile, they
have a negative bias due to ignoring short-term variability. In
principle, the total bias e the sum of contour construction, serial
correlation and short-term variability bias e can be compensated
by evaluating the contour's design condition at a higher quantile of
the short-term response. However, there is no theoretical support
for compensating the bias due to contour construction and due to
serial correlation by evaluating the short-term response at a higher
quantile. If the bias effect is taken into account, it would be more
logical to compensate the biases of contour construction and serial
correlation by inflating or deflating the contour. An IFORM contour
is too small if the failure surface is non-convex (as is the case here)
and a contour based on serially correlated environmental data is
too big.

The results of this study are sensitive to the response and to the
environment. While we aimed to build a high-quality response
emulator and a high-quality statistical model to produce artificial
time series, two particular aspects might deviate from reality: The
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response emulator's GEV distribution's shape parameter is positive
at medium wind speeds of about 18 m s�1, which means that the
distribution does not have an upper bound. In reality, there is an
upper bound. Thus, the estimated distribution has some bias in the
tail. By performingmultiphysics simulations longer than 1 hour and
possibly using themaxima from blocks longer than 1min one could
estimate the tail better. Another possible bias is our model for the
distribution of significant wave height. Given that the considered
site has a water depth of 30 m, the model might overestimate the
occurrence of very high wave heights. Both aspects are important
because for some response variables the extremes occur at themid-
wind speed region and for other variables they occur at the high
wind speed - high wave height region. If the response at mid wind
speeds is different or the environment at high wind speeds, the
differences between the true 50-year response and the contour-
based estimate could change.

Similarly, that means that the results are sensitive if a different
response variable is analyzed that we did not consider here or if a
different offshore site is analyzed. Some results, however, likely
hold for other response variables and other offshore sites:

1. Due to awind turbine's controller, there will always be response
variables where the contour has two regions of high response in
the wind speed - significant wave height variable space, which
implies a non-convex failure surface. Therefore, the IFORM



Fig. 17. Response at the contours' design conditions normalized by the true 50-year response. Design conditions were evaluated at the 0.5 quantile.
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approximation of a linearized failure surface is non-conservative
in this application. To avoid this source of non-conservatism, an
ISORM or highest density contour can be constructed instead.
However, if spectral peak period is varied deterministically with
Hs and V, this relationship can offset the non-conservatism of
the IFORM contour.

2. Serial correlation leads to an overestimation of the contour-
based estimate. In this study the effect was up to 8%.

3. The response short-term variability leads to an underestimation
of the contour-based estimate. In this study the effect was be-
tween 17 and 28%.

4. If there is a clear understanding, which spectral peak periods
cause an unfavorable response, a 2D wind speed - wave height
contour can be used instead of a 3D contour, together with a
typical unfavorable Tp value. Although such probabilistic-
deterministic variable combinations are theoretically fuzzy,
they greatly reduce the number of design conditions along the
“contour” that need to be evaluated. If there is no clear under-
standing about which Tp values are unfavorable, a 3D “contour”
should be constructed.

These four points might help designers of wind turbines deal
with the effects of the various assumptions in environmental
contour methods. Because individual errors can either add up or
961
balance each other out, understanding the sources of bias is of great
practical importance.

Future research on the long-term response of offshore wind
turbines could explore other response variables and other sites. It
would be interesting to explore the upper bound of bias for
contour-based estimates. Additionally, future research could
explore how more environmental variables could be considered
during the estimation of the long-term response. Implicitly, we
assumed in this study that only wind speed, significant wave height
and spectral peak period change over time. This means that we
assumed that wind and wave always come from the same direction
and that sea level, current, turbulence structure, spectrum type and
many other variables are constant. At the moment, it is unclear how
big the influence of this assumption is. Other variables could be
incorporated into either FLTA or contour-based estimates. However,
estimating joint distributions and conducting a sufficient number
of response simulations, becomes problematic as the number of
variables increases.

5. Conclusions

In this work, we analyzed how well the long-term extreme
response of an offshore wind turbine can be estimated based on
environmental contours. The question was motivated by the fact



Fig. 18. 10 m moment at the contours' design conditions normalized by the true 50-year response. The design conditions are evaluated at various quantiles of the short-term
response.

Fig. 19. Sources of bias for the two contour-based estimates, the 50-year 10 m moment (a) and the 50-year 30 m moment (b). Contour construction bias can be negative or positive,
however, serial correlation bias is always positive and short-term variability bias is always negative. The contour's design condition were evaluated at the 0.5 quantile of the short-
term response. Contour construction bias: xc50 � ~xd50, serial correlation bias: ~xd50 � xd50, short-term variability bias: xd50 � xs50, overall required compensation: xs50 � xc50. Def-
initions for these variables are given in subsection 3.3.
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that authoritative design standards recommend the use of envi-
ronmental contours forwind turbinedesign, however, itwasunclear
how these contour-based estimates compare to the true long-term
response. Offshore wind turbine design is particularly concerned
with the 50-year extreme response. As estimating the true 50-year
extreme response with high accuracy requires the characterization
of the response over at least one order of magnitude longer time
periods than the return period of interest, we used a statistical
response emulator for the short-term response and a statistical
model to generate environmental data of arbitrary lengths.
962
A high-accuracy estimate of the response was obtained by
simulating the short-term response of continuous 1000-year arti-
ficial time series using a response emulator. The emulator was
previously created based on multiphysics simulations that were
performed across the complete wind-wave variable space. We
considered five different environmental contours, including the
approach that is currently recommended in the design standard IEC
61400-3-1 [1]. We found that e as already suggested by other au-
thors e the recommended IFORM contour approach can underes-
timate the response to some degree because it assumes a convex
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failure surface. However, this effect was only apparent in some
response variables such as the 10 m moment, but it did not play a
role in others such as the 30 m moment. In addition, the effect was
relatively small in the affected response variables. Other sources of
bias of the contour-based estimates were serial correlation and
short-term variability. For the 10 m moment short-term variability
was by far the strongest source of bias. The broader literature on
marine structures proposed to compensate for this effect by eval-
uating the contour's design condition at a higher quantile of the
short-term response. Currently, this is not mentioned in the wind
turbine design standard [1], which recommends to use the average
of the maxima of several stochastic realizations. For a symmetric
distribution this is equivalent with evaluating the distribution of
the maxima of the short-term response at the 0.5 quantile, in other
words, taking themedianmaximum. Here, we found that this could
dramatically underestimate the true 50-year response. For the 50-
year extreme of the moment at 10 m water depth the design con-
ditions needed to be evaluated at the 0.99 quantile to compensate
the bias as otherwise the true response was underestimated by
25e28% (depending upon which relationship for Tp|V, Hs was
considered). Alternatively, if a highest density contour were used
instead of an IFORM contour, its design conditions needed to be
evaluated at the 0.9 quantile to compensate for the bias.

The differences between contour-based estimates and the true
50-year return values, however, were very sensitive to the type of
response (moment at 30 m water depth or moment at 10 m water
depth) and are likely also very sensitive to the offshore site: The
turbine's controller succeeds in pitching the blades to reduce loads
as wind speeds increase, however, as a side-effect long-term ex-
tremes might occur during power production or during parked
condition e depending upon the response variable and the site's
environmental conditions. This makes estimating the extreme
response based on an environmental contour particularly chal-
lenging as the response's short-term variability at these two states
can be very different. Thus, the bias in a contour-based estimate
due to short-term variability can vary depending on the response
variable and offshore site characteristics. The full long-term anal-
ysis used in this work can be used to calculate an unbiased esti-
mator of the long-term extreme response and to identify the
different sources of bias associated with a contour-based estimate.
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